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STEP 3 Introduction  
 
One question was attempted by well over 90% of the candidates two others by about 90%, 
and a fourth by over 80%.  Two questions were attempted by about half the candidates and 
a further three questions by about a third of the candidates.  Even the other three received 
attempts from a sixth of the candidates or more, meaning that even the least popular 
questions were markedly more popular than their counterparts in previous years.   
 
Nearly 90% of candidates attempted no more than 7 questions. 
 
  



Question 1 

This was the most popular question with 94% attempting it, and it was also the most 
successful with a mean mark of nearly 14/20.  Apart from very occasional inaccuracies, part 
(i) was always successfully done.

The first summation result in part (ii) was usually successfully done, though there was some 
poor summation notation which let some candidates down.  The second summation was 
completed successfully by virtue of some heavy algebra or, more efficiently, by seeing the 
connection to the first result dividing the quartic by t4 and comparing the quartic for the 
reciprocals with that in part (i).  Some candidates were penalised for not justifying their 
result, having clearly worked backwards from part (iii).    

Part (iii) was well done except when candidates disregarded their result from part (ii).  

A lot of candidates managed to correctly interpret the implication of the curves touching 
at two distinct points in terms of the roots for t and the consequent result for the product 
of the four roots, but then struggled to reach the required result by algebra or poorly 
justified geometric arguments. 



Question 2  

The fifth most popular question, being attempted by just a little over half the candidates, it 
was the fourth most successful with a mean score of 9/20.   

Whilst the algebra associated with this question was not difficult, the logic and 
communication required was certainly too much for many students.  

In part (i) it required some justification that 𝑎𝑎 had to be even.  Contradiction or infinite 
descent could be used but either way the argument had to be made clear. Claiming “this can 
be continued forever” or moduli were always decreasing would eventually get to zero was 
not good enough. Successful candidates were able to explain why the integer nature of the 
solutions was vital to reach a contradiction.   

In part (ii) many candidates were able to see that this was a similar problem to the first one, 
and most observed that divisibility by three was now the key idea.  

In part (iii), many candidates were able to consider the remainders when divided by 3, but 
again many struggled to communicate clearly an argument leading to the final 
contradiction.   

By part (iv) most candidates were expecting to recreate the original equation again and the 
fact that this did not happen meant some came to a dead halt. Other were either oblivious 
to the issue or were bluffing their way through as a slightly more subtle argument was now 
required.  

  



Question 3 

This was very popular, being attempted by over 90%, but not very successfully, with a mean 
score of about 5.5/20.   In part (i), candidates generally obtained a correct equation for x or 
y, but then failed to properly justify the manipulation of the inequality.  Whilst the quartic 
was frequently correctly obtained in part (ii), there were a number of different incorrect 
assumptions or assertions made regarding the two stationary points being repeated roots or 
the value of the quartic having different signs at the two stationary points.  It was also 
common that the case when c is negative was not considered.  Whilst it was not uncommon 
for candidates to argue incorrectly for part (iii) that the three equations were equivalent to 
the curve C2 in part (ii) having one stationary point, (often using 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 0

0
), in contrast, a 

pleasing number of candidates who made little progress in (ii) past obtaining the quartic, 
approached part (iii) by simply attempting to solve the equations by elimination, earning full 
or close to full marks. 

  



Question 4 

This was the fourth most popular question being attempted by more than four fifths of the 
candidates, with a moderate degree of success scoring a mean of 9/20.   

Part (i) suffered from incorrect flows of logic in the inductive and base cases, as well as 
failure to mention anything about not dividing by zero.   

In part (ii) many ignored the instruction to use the Maclaurin series, and used de L’Hopital’s 
Rule to their cost, and some ignored the higher order terms.   

Part (iii) was generally well done, though the most common error was not justifying the 
evaluation of the product using a geometric series in the exponent.   

For part (iv), the best attempted route was to use an imaginary substitution which led to 
mostly successful solutions.  Some candidates attempted to prove an analogous 
trigonometric identity using similar arguments to the previous parts, however losing marks 
for not sufficiently fleshing out the details, and some attempted to use Osborn’s Rule, often 
with insufficient justification or stating that it was being used.  Once the identity was 
achieved, the calculation was generally done well if the candidate progressed this far. 

  



Question 5 

This was only very slightly less popular than question 3, but it was the third most successful 
with a mean of just under half marks.    

Part (i) was well done, with a variety of methods used, the most common being by a 
substitution of 𝑒𝑒𝑑𝑑 .  In this part, the most frequent errors were showing insufficient working 

to fully justify the given result, not spotting how to simplify 1+𝑒𝑒
𝑎𝑎

1+𝑒𝑒−𝑎𝑎
, and incorrectly 

integrating ∫ 1
1+𝑒𝑒𝑥𝑥

𝑑𝑑𝑑𝑑 to get ln (1 + 𝑒𝑒𝑑𝑑).    

Part (ii) was generally found to be the hardest.  There was a range of responses to the first 
requirement from concise use of the Fundamental theorem of Calculus to long, often 
imprecise, paragraphs of text.  Candidates attempting proof by contradiction tended to be 
more successful if they used a sketch to back up their argument.  The second result saw 
many different methods used.  The most common mistakes were not showing enough 
working when using a u=-x substitution, not showing that the argument can be reversed, 
and using an incorrect argument such as ∫ 𝑔𝑔(𝑑𝑑) = 0𝑎𝑎

−𝑎𝑎 → 𝑔𝑔(𝑑𝑑) = 0 (to which 𝑔𝑔(𝑑𝑑) = 𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑  
is a counterexample).  Many candidates did not see the link with the first requirement of the 
part. However, the final result of this part was usually done well.   

Candidates found part (iii) easier than part (ii), the most common mistake was not realising 
that ℎ(𝑑𝑑)  = ℎ(−𝑑𝑑) holds, even though this was stated in the question.   

Part (iv) was generally done well, with the most common mistakes being neglecting to show 
that the functions satisfied the conditions in part 3 or omitting a factor of 2.  A few 
candidates did not use the results from the previous parts, instead using other methods, 
which, as the question stated “hence”, gained no credit for this part. 

  



Question 6 

About half the candidates attempted this, but it was one of the least successful with a mean 
score of one quarter marks.   

Many candidates managed the opening ‘show that’ in part (i) but the limit attempt had 
varying levels of success, and a common error was division by a quantity that was not 
necessarily nonzero.   

In part (ii), diagrams were regularly lacking, often being drawn extremely small with the 
most salient details omitted.   

In part (a), very few indicated from where the second term in the expression for 𝑑𝑑 arose.  
Most attempts appealed to a diagram but did not indicate the pertinent angles.   

Many formed the correct equation in (b), but a large number forgot to account for the 
periodicity; those that remembered to do so largely did so correctly.   

Many who got to (c), erroneously evaluated a 0/0 limit and then argued that the cotangent 
was the answer they wanted.  However, pleasingly others did spot the zeros and 
manipulated the trigonometry effectively. 

  



Question 7 

More than a third attempted this, marginally more successfully than questions 3 and 6.  

Many attempts were restricted to part (i). The first result was generally achieved, and whilst 
the second result was often obtained, quite a few had difficulties doing so because they 
overlooked that n was a unit vector and what this implied.  Far fewer correctly drew and 
labelled the diagram required in part (i) because they failed to appreciate the magnitudes of 
the three vectors and that two were perpendicular.   

Parts (ii) and (iii), when attempted, saw candidates fall into two camps.  A small number 
could see what both transformations were and using the considerations suggested in (ii) in 
part (iii) as well, could justify their answers.  However, a larger number had some idea what 
the transformations might be, but often failed to define them precisely, and likewise failed 
to justify their conclusions, even given the approach to use in (ii). 



Question 8 

This was the least popular Pure question, being attempted by marginally fewer than 
question 7, but by more than any of the Mechanics or Probability and Statistics.  The mean 
mark was 6/20.   

Generally, part (i) was done well and candidates used binomial expansions accurately, 
manipulating their results to find the two required expressions.  A few did not gain full 
credit through providing insufficient working for the result given in the question.   

More than half the candidates progressed no further than attempting part (ii) and, of those 
who did attempt it, often stopped part of the way through, although there were some very 
well-reasoned attempts.  Most candidates attempting part (ii) substituted a = sec(θ) into 
their sin expansion but found it difficult to complete the argument to explain why k had to 
be even.  Of those who got further and successfully managed to show the given results, 
often the relevance of those results was not appreciated, and some candidates attempted 
to prove irrationality by quoting the irrationality of 𝜋𝜋, despite the fact that the question 
stated 𝜃𝜃 was measured in degrees. Very few candidates gained full credit for this part.  
Those candidates who gained full credit in part (ii) also did well in (iii). 

  



Question 9 

The most popular of the Applied questions, with a third of candidates attempting it; it was 
the second-best scoring question on the paper with a mean score of just above half marks.  

The question relied mainly on the use of conservation of momentum and Newton’s 
experimental law of impact.  Most candidates made a very good start with several scoring 
full or close to full marks in the first part. The difficulties arose later when dealing with the 
three-particle situation in part (ii). Very few candidates were able to take a step back and 
see how this problem linked to part (i), resulting in long pages of algebraic manipulation 
which were inefficient and rarely correct. A good diagram would have made the link so 
much more obvious! 

  



Question 10 

Along with question 12, this was the least popular question on the paper with a sixth of 
candidates trying it, and scoring one third marks, on average.   

Part (i) was done well, demonstrating good use of Hooke’s law, and resolving forces.  It was 
failing to think about right angled triangle trigonometry that created most problems.   

In part (ii), many candidates got the signs of their potential energies wrong.  Of those 
candidates who got to the correct expression for 𝑝𝑝 most were able to find the maximum 
value correctly but very few were able to explain why the physical situation resulted in a 
restricted domain for the function.  Showing the value of 𝑝𝑝 must be 0.7 to one significant 
figure was rarely done well as many candidates used known approximations to the given 
surds without justifying the accuracy of these approximations.  

  



Question 11 

A quarter of the candidates attempted this, scoring a mean of one third marks. Of these, 
about a quarter made little or no progress. However, there were also several very good 
attempts achieving most or all of the marks available.   

In part (i)(a) the majority of candidates noticed the symmetry of the distribution and were 
therefore able to answer this part well, although errors such as omitting the binomial 
coefficients and forgetting that X could take the value 0 were made in some cases.   

In part (i)(b) most candidates were able to see that the modulus sign in the sum effectively 
meant that the calculation of 𝛿𝛿 should be split into two sums. However, in several cases 
candidates simply observed that the given result followed from the two sums by symmetry 
without sufficient justification to earn the marks.   

Almost all candidates who attempted part (i)(c) were able to show the first result by 

applying the definition of �2𝑠𝑠
𝑟𝑟 � and then cancelling terms. A small number of candidates 

argued the result by viewing the two expressions as representing different ways of counting 
the same total number of things.  For the next part of (i)(c) the majority of candidates split 
the sum and then applied the previous result to the second term. Many candidates, 
however, did not pay sufficient attention to the case where 𝑟𝑟 = 0 and ended up with an 
incorrect term in the sum. Many candidates jumped straight to the given answer at this 
point and therefore did not show sufficient detail to earn the remaining marks for this part. 
Many of the candidates who progressed further with this part dealt with the two sums 

separately, but some used the fact that �2𝑠𝑠
𝑟𝑟 � = �2𝑠𝑠 − 1

𝑟𝑟 − 1 � + �2𝑠𝑠 − 1
𝑟𝑟 � to rearrange into a 

sum of differences, most of which then cancelled out.   

Candidates who had completed part (i)(c) well were able to apply the same methods to the 
case in part (ii) and this part was generally completed well, although a small number of 
candidates failed to notice that the expression for the mean in terms of 𝑠𝑠 had changed. 

  



Question 12 

The least popular question on the paper, it was also the least successful with a mean score 
of just under one quarter marks.  Many attempts did not make much progress beyond the 
first part. Candidates with a good understanding of how to calculate the expectation of a 
function of a random variable generally made very good progress.   

In part (i) many candidates were able to calculate the length of the chord, although many 
used the cosine rule on an isosceles triangle to reach 𝑎𝑎√2 − 2 cos 2𝜃𝜃, making that 
integration a little harder. A significant number of candidates who attempted this part 
omitted to include the probability density function when integrating to calculate the 
expected value. A small number of candidates chose to consider the length of the chord as a 
random variable and calculated its probability density function, from which they could then 
calculate the expected value. While this approach was in general successful it was a 
significantly more complicated approach.   

In part (ii), many candidates were able to work out the probability density function. Several 
candidates struggled to find an expression for the length of the chord and so failed to make 
any further progress from this point. Those that did were often able to complete the 
calculation of the expected value correctly. In a small number of cases, candidates 
attempted to calculate the probability density function for the length of the chord in order 
to calculate the expected value. In this case care needs to be taken with the limits of the 
integration as the shortest possible length for such chords needs to be calculated.  A good 
number of candidates were able to rearrange the expected value in part (ii) into the 
requested form and many were then able to complete part (iii) successfully, although a 
number of attempts again omitted the probability density function and other attempts 
multiplied the function by 𝑡𝑡 before integrating. 
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1.  (i)  At intersections 

(𝑐𝑐𝑐𝑐 − 𝑎𝑎)2 + �
𝑐𝑐
𝑐𝑐 − 𝑏𝑏�

2
= 𝑟𝑟2 

       M1 

Expanding brackets, collecting like terms and multiplying through by  𝑐𝑐2 (𝑐𝑐 ≠ 0) gives 

  𝑐𝑐2𝑐𝑐4 − 2𝑎𝑎𝑐𝑐 𝑐𝑐3 + ( 𝑎𝑎2 + 𝑏𝑏2 − 𝑟𝑟2) 𝑐𝑐2 − 2𝑏𝑏𝑐𝑐𝑐𝑐+ 𝑐𝑐2 = 0 

as required.       *A1  (2) 

(ii)  

�𝑐𝑐𝑖𝑖2
4

𝑖𝑖=1

= ��𝑐𝑐𝑖𝑖

4

𝑖𝑖=1

�

2

− 2��𝑐𝑐𝑖𝑖 𝑐𝑐𝑗𝑗  = �
2𝑎𝑎𝑐𝑐
 𝑐𝑐2

�
2

− 2
( 𝑎𝑎2 + 𝑏𝑏2 −  𝑟𝑟2)

𝑐𝑐2

4

𝑗𝑗>𝑖𝑖

3

𝑖𝑖=1

=
2
𝑐𝑐2

(𝑎𝑎2 −  𝑏𝑏2 + 𝑟𝑟2) 

   M1 A1    dM1 A1  *A1  (5) 

as required. 

Dividing the equation (*) by  𝑐𝑐4 (again 𝑐𝑐 ≠ 0) gives 

𝑐𝑐2 −
2𝑎𝑎𝑐𝑐
𝑐𝑐  + ( 𝑎𝑎2 + 𝑏𝑏2 −  𝑟𝑟2) −

2𝑏𝑏𝑐𝑐
𝑐𝑐3 + 

𝑐𝑐2

𝑐𝑐4 = 0 

which has roots  𝑐𝑐𝑖𝑖  and thus     M1 

 𝑐𝑐2𝑐𝑐4− 2𝑏𝑏𝑐𝑐 𝑐𝑐3 + ( 𝑎𝑎2 + 𝑏𝑏2 −  𝑟𝑟2) 𝑐𝑐2− 2𝑎𝑎𝑐𝑐𝑐𝑐 + 𝑐𝑐2 = 0 

    M1 A1 

has roots  1
𝑡𝑡𝑖𝑖

 , which is just (*) with a and b interchanged. E1 

Thus 

�
1
𝑐𝑐𝑖𝑖2

4

𝑖𝑖=1

= 
2
𝑐𝑐2

(𝑏𝑏2 −  𝑎𝑎2 + 𝑟𝑟2) 

from the first result of (ii).  A1 (5) 

Alternative:- 

�
1
𝑐𝑐𝑖𝑖2

4

𝑖𝑖=1

= 
𝑐𝑐12𝑐𝑐22𝑐𝑐32 + 𝑐𝑐22𝑐𝑐32𝑐𝑐42 + 𝑐𝑐32𝑐𝑐42𝑐𝑐12 + 𝑐𝑐42𝑐𝑐12𝑐𝑐22

𝑐𝑐12𝑐𝑐22𝑐𝑐32𝑐𝑐42
 

      M1 

=
(𝑐𝑐1𝑐𝑐2𝑐𝑐3+ 𝑐𝑐2𝑐𝑐3𝑐𝑐4+ 𝑐𝑐3𝑐𝑐4𝑐𝑐1+ 𝑐𝑐4𝑐𝑐1𝑐𝑐2)2− 2𝑐𝑐1𝑐𝑐2𝑐𝑐3𝑐𝑐4(𝑐𝑐1𝑐𝑐2 + 𝑐𝑐1𝑐𝑐3 + 𝑐𝑐1𝑐𝑐4+ 𝑐𝑐2𝑐𝑐3 + 𝑐𝑐2𝑐𝑐4+ 𝑐𝑐3𝑐𝑐4)

(𝑐𝑐1𝑐𝑐2𝑐𝑐3𝑐𝑐4)2  

M1 A1 A1 

=  
2
𝑐𝑐2

(𝑏𝑏2 −  𝑎𝑎2 + 𝑟𝑟2) 

      A1 



(iii)  

�𝑂𝑂𝑃𝑃𝑖𝑖2
4

𝑖𝑖=1

= �� 𝑐𝑐2𝑐𝑐𝑖𝑖
2+

𝑐𝑐2

 𝑐𝑐𝑖𝑖2
�

4

𝑖𝑖=1

= 𝑐𝑐2 �
2
𝑐𝑐2

(𝑎𝑎2 −  𝑏𝑏2 + 𝑟𝑟2) +
2
𝑐𝑐2

(𝑏𝑏2 −  𝑎𝑎2 + 𝑟𝑟2)� = 4𝑟𝑟2 

as required.    M1 *A1 (2) 

(iv)  Touching at two distinct points implies the roots of (*) are two pairs of coincident roots. 

WLOG say  𝑐𝑐1 = 𝑐𝑐3 and  𝑐𝑐2 = 𝑐𝑐4  .  E1 

then as the product of the four roots is 1  (from (*)),  𝑐𝑐12𝑐𝑐22 = 1   B1 and therefore  𝑐𝑐1𝑐𝑐2 = ±1 .  

𝑃𝑃1   is  �𝑐𝑐𝑐𝑐1, 𝑐𝑐
𝑡𝑡1
�  and 𝑃𝑃2   is  �𝑐𝑐𝑐𝑐2 , 𝑐𝑐

𝑡𝑡2
� = ±� 𝑐𝑐

𝑡𝑡1
, 𝑐𝑐𝑐𝑐1�  B1 which are reflections of one another in        

𝑦𝑦 = ±𝑥𝑥 respectively, and these are the mediators of the pairs of points. E1 The centre of the circle 
𝐶𝐶2  lies on the mediator of  𝑃𝑃1  and  𝑃𝑃2  E1 which we have shown is  𝑦𝑦 = ±𝑥𝑥 .  E1 (6) 

 

Alternative E1 B1 as before 

𝑐𝑐1+ 𝑐𝑐2+ 𝑐𝑐3 + 𝑐𝑐4 =
2𝑎𝑎
𝑐𝑐  ⇒ 𝑐𝑐1+ 𝑐𝑐2 =

𝑎𝑎
𝑐𝑐  

𝑐𝑐1𝑐𝑐2𝑐𝑐3+ 𝑐𝑐2𝑐𝑐3𝑐𝑐4+ 𝑐𝑐3𝑐𝑐4𝑐𝑐1 + 𝑐𝑐4𝑐𝑐1𝑐𝑐2 =
2𝑏𝑏
𝑐𝑐  ⇒  𝑐𝑐12𝑐𝑐2 + 𝑐𝑐22𝑐𝑐1+ 𝑐𝑐12𝑐𝑐2 + 𝑐𝑐22𝑐𝑐1 =

2𝑏𝑏
𝑐𝑐  

⇒ (𝑐𝑐1+ 𝑐𝑐2)𝑐𝑐1𝑐𝑐2 =
𝑏𝑏
𝑐𝑐  

     M1 A1 

So      𝑐𝑐1𝑐𝑐2 = 𝑏𝑏
𝑎𝑎

= ±1    and hence   𝑎𝑎 = ±𝑏𝑏  and so the centre of  𝐶𝐶2  is (𝑎𝑎, ±𝑎𝑎 ) as required. 

     M1 A1 

Alternative E1 B1 as before 

𝑐𝑐12+ 𝑐𝑐22+ 𝑐𝑐32 + 𝑐𝑐42 = 2(𝑐𝑐12 + 𝑐𝑐22) = 2 �
1
𝑐𝑐22

+
1
𝑐𝑐12

� =
1
𝑐𝑐12

+
1
𝑐𝑐22

+
1
𝑐𝑐32

+
1
𝑐𝑐42

 

       M1 A1 

and thus  2
𝑐𝑐2

(𝑎𝑎2 −  𝑏𝑏2 + 𝑟𝑟2) = 2
𝑐𝑐2

(𝑏𝑏2 −  𝑎𝑎2 + 𝑟𝑟2)  so  𝑎𝑎2 = 𝑏𝑏2  and  𝑎𝑎 = ±𝑏𝑏 

     M1 A1 
  



2.  (i)  

If 
𝑎𝑎3 + 2𝑏𝑏3 + 4𝑐𝑐3 = 0 

then 

𝑎𝑎3 = 0 − 2𝑏𝑏3 − 4𝑐𝑐3 = 2(−𝑏𝑏3 − 4𝑐𝑐3) 

which is even.  If  𝑎𝑎 were odd, then 𝑎𝑎3 would be odd.  So, 𝑎𝑎 is even.   

Thus  ∃𝑝𝑝 where 2𝑝𝑝 = 𝑎𝑎, with 𝑝𝑝 an integer and  |𝑝𝑝| < |𝑎𝑎|     E1 

Substituting for 𝑎𝑎 in the original equation,  8𝑝𝑝3 + 2𝑏𝑏3 + 4𝑐𝑐3 = 0  .  Dividing by 2 and rearranging 
gives  𝑏𝑏3 + 2𝑐𝑐3 + 4𝑝𝑝3 = 0  which is the original equation with a,b,c replaced by b,c p. 

So we may repeat the argument with, say,  2𝑞𝑞 = 𝑏𝑏  and then having done so repeat the whole 
argument with 2𝑟𝑟 = 𝑐𝑐 .  E1 

Thus  ∃𝑝𝑝,𝑞𝑞, 𝑟𝑟 integers with 2𝑟𝑟 = 𝑐𝑐 ,   |𝑟𝑟| < |𝑐𝑐|  and  𝑝𝑝3 + 2𝑞𝑞3+ 4𝑟𝑟3 = 0 . 

So if there were to be a set of such integers a, b, c, there would be a set of such integers p, q, r with 
smaller modulus satisfying the same result.  This argument may be repeated ad infinitum leading to 
the conclusion that there is no least modulus set of integers which is not possible as an infinitely 
decreasing sequence of positive integers cannot exist being bounded by 1.  (alternatively, assume a, 
b, c to be smallest modulus, then we have a contradiction) E1 Hence no such a, b, c exist.  *B1 (4) 

(ii)  If  9𝑎𝑎3 + 10𝑏𝑏3 + 6𝑐𝑐3 = 0 , then  10𝑏𝑏3 = −9𝑎𝑎3 − 6𝑐𝑐3 = 3(−3𝑎𝑎3 − 2𝑐𝑐3)  

Thus  10𝑏𝑏3 is a multiple of 3 and so, 𝑏𝑏3 is a multiple of 3 and thus, 𝑏𝑏  is a multiple of 3. 

Thus  ∃𝑞𝑞 where 3𝑞𝑞 = 𝑏𝑏, with 𝑞𝑞 an integer and  |𝑞𝑞| < |𝑏𝑏|  M1 A1 and  9𝑎𝑎3 + 270𝑞𝑞3+ 6𝑐𝑐3 = 0  
which can be divided by 3 to give 3𝑎𝑎3 + 90𝑞𝑞3 + 2𝑐𝑐3 = 0. 

It would follow that 2𝑐𝑐3 = −3𝑎𝑎3 − 90𝑞𝑞3 = 3(−𝑎𝑎3 − 30𝑞𝑞3) and so ∃𝑟𝑟 where 3𝑟𝑟 = 𝑐𝑐, with 𝑟𝑟 an 
integer and  |𝑟𝑟| < |𝑐𝑐|.   

Substituting for 𝑐𝑐 ,  3𝑎𝑎3 + 90𝑞𝑞3+ 54𝑟𝑟3 = 0  leading to  𝑎𝑎3 + 30𝑞𝑞3 + 18𝑟𝑟3 = 0 . 

We may repeat the argument with 3𝑝𝑝 = 𝑎𝑎  leading to  27𝑝𝑝3 + 30𝑞𝑞3+ 18𝑟𝑟3 = 0  which on division 
by 3 gives  9𝑝𝑝3 + 10𝑞𝑞3 + 6𝑟𝑟3 = 0  , the original equation with a, b, c replaced by p, q, r. A1 

So the conclusion can be drawn in the same way as in part (i).   (‘by descent’)  E1 (4) 

(iii)  (3𝑛𝑛 ± 1)2 = 9𝑛𝑛2 ± 6𝑛𝑛 + 1 = 3(3𝑛𝑛2± 2𝑛𝑛) + 1   B1 Every integer may be written as  3𝑛𝑛 − 1 , 
3𝑛𝑛 or  3𝑛𝑛 + 1 .  We have shown that the square of an integer which is not a multiple of 3 is one 
more than a multiple of 3, and if an integer is a multiple of 3 then it can be written 3𝑛𝑛 and 

 (3𝑛𝑛)2 = 9𝑛𝑛2 = 3(3𝑛𝑛2) which is a multiple of 3.  Thus the sum of two integers can only be either a 
multiple of 3, one more than a multiple of 3, or two more than a multiple of 3 depending on whether 
the two integers are multiples of 3, exactly one is a multiple of 3 or neither is a multiple of 3 
respectively.  Hence the result that the sum of two squares can only be a multiple of three if each of 
the integers is a multiple of three.  E1 

If  𝑎𝑎2 + 𝑏𝑏2 = 3𝑐𝑐2 , by the result just deduced, 

 ∃𝑝𝑝 ,𝑞𝑞 where 3𝑝𝑝 = 𝑎𝑎 ,   3𝑞𝑞 = 𝑏𝑏  and  |𝑝𝑝| < |𝑎𝑎| , |𝑞𝑞| < |𝑏𝑏| M1 



Substituting for a and b,  9𝑝𝑝2+ 9𝑞𝑞2 = 3𝑐𝑐2  so  𝑐𝑐2 = 3(3𝑝𝑝2+ 3𝑞𝑞2)  meaning that  𝑐𝑐2 is a multiple of 
3 and hence 𝑐𝑐 is a multiple of 3. 

So  ∃𝑟𝑟 where 3𝑟𝑟 = 𝑐𝑐, with 𝑟𝑟 an integer and  |𝑟𝑟| < |𝑐𝑐|  , and substituting for c and dividing by 9 , 

 𝑝𝑝2+ 𝑞𝑞2 = 3𝑟𝑟2  which is the original with a, b ,c replaced by p, q, r.  As in (i) and (ii), the required 
result follows by descent.  E1 (4) 

(iv)   (4𝑛𝑛 ± 1)2 = 16𝑛𝑛2± 8𝑛𝑛+ 1 = 4(4𝑛𝑛2 ± 2𝑛𝑛) + 1  so, the square of an odd integer is one more 
than a multiple of four. M1  (2𝑛𝑛)2 = 4𝑛𝑛2  so the square of an even integer is a multiple of four. M1 

Thus, the sum of the squares of three non-zero integers must be 0, 1, 2 or 3 more than a multiple of 
four as the integers are all even, two even and one odd, one even and two odd, or all odd 
respectively. A1 

Thus if  𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2 = 4𝑎𝑎𝑏𝑏𝑐𝑐 ,  𝑎𝑎, 𝑏𝑏 , and  𝑐𝑐  must all be even.  B1 

Thus  ∃𝑝𝑝,𝑞𝑞, 𝑟𝑟 integers with 2𝑝𝑝 = 𝑎𝑎  , 2𝑞𝑞 = 𝑏𝑏 , 2𝑟𝑟 = 𝑐𝑐 , and  |𝑝𝑝| < |𝑎𝑎| , |𝑞𝑞| < |𝑏𝑏| , |𝑟𝑟| < |𝑐𝑐|  .  M1 

So, if   𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2 = 4𝑎𝑎𝑏𝑏𝑐𝑐 ,  4𝑝𝑝2 + 4𝑞𝑞2 + 4𝑟𝑟2 = 32𝑝𝑝𝑞𝑞𝑟𝑟 , which simplifies to 

 𝑝𝑝2+ 𝑞𝑞2+ 𝑟𝑟2 = 8𝑝𝑝𝑞𝑞𝑟𝑟. (Alternatively, 𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2 = 2𝑛𝑛𝑎𝑎𝑏𝑏𝑐𝑐  ,  𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2 = 2𝑛𝑛+1𝑎𝑎𝑏𝑏𝑐𝑐  ) 

M1 

The argument can be repeated with 𝑝𝑝, 𝑞𝑞 , and  𝑟𝑟  all being even integers with the multiple of the RHS 
being a power of two greater than 4. E1 Thus the result follows by descent. E1 (8) 

  



3. (i)   𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑥𝑥𝑦𝑦 + 𝑐𝑐𝑦𝑦2 = 1 

Differentiating with respect to  𝑥𝑥 , 

2𝑎𝑎𝑥𝑥+ 𝑏𝑏𝑦𝑦 + 𝑏𝑏𝑥𝑥
𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥 + 2𝑐𝑐𝑦𝑦

𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥 = 0 

      M1 

For stationary points,  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0 , so  2𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑦𝑦 = 0 

Multiplying the original equation by  𝑏𝑏2 

𝑎𝑎𝑏𝑏2𝑥𝑥2+ 𝑏𝑏3𝑥𝑥𝑦𝑦+ 𝑏𝑏2𝑐𝑐𝑦𝑦2 = 𝑏𝑏2  

Thus as  𝑏𝑏𝑦𝑦 = −2𝑎𝑎𝑥𝑥 ,  𝑎𝑎𝑏𝑏2𝑥𝑥2 − 2𝑎𝑎𝑏𝑏2𝑥𝑥2+ 4𝑎𝑎2𝑐𝑐𝑥𝑥2 = 𝑏𝑏2  M1 

𝑎𝑎(4𝑎𝑎𝑐𝑐− 𝑏𝑏2)𝑥𝑥2 = 𝑏𝑏2  

       A1 

We require two stationary points and as  𝑎𝑎𝑏𝑏𝑐𝑐≠ 0 ,  𝑏𝑏 ≠ 0  and as  𝑎𝑎 > 0 , 

4𝑎𝑎𝑐𝑐− 𝑏𝑏2 > 0 

giving   
𝑏𝑏2 < 4𝑎𝑎𝑐𝑐 

as required. 

 

(Alternatively, as 2𝑎𝑎𝑥𝑥 = −𝑏𝑏𝑦𝑦 ,  (−𝑏𝑏𝑦𝑦)2 + 2𝑏𝑏(−𝑏𝑏𝑦𝑦)𝑦𝑦+ 4𝑎𝑎𝑐𝑐𝑦𝑦2 = 4𝑎𝑎,  (4𝑎𝑎𝑐𝑐− 𝑏𝑏2)𝑦𝑦2 = 4𝑎𝑎 for 
M1A1) 

 E1 (4) 

(ii)  𝑎𝑎𝑦𝑦3 + 𝑏𝑏𝑥𝑥2𝑦𝑦+ 𝑐𝑐𝑥𝑥 = 1 

Differentiating with respect to  𝑥𝑥 , 

3𝑎𝑎𝑦𝑦2
𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥 + 2𝑏𝑏𝑥𝑥𝑦𝑦+ 𝑏𝑏𝑥𝑥2

𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥 + 𝑐𝑐 = 0 

       M1 

For stationary points,  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0 , so  2𝑏𝑏𝑥𝑥𝑦𝑦 + 𝑐𝑐 = 0 

Multiplying  𝑎𝑎𝑦𝑦3+ 𝑏𝑏𝑥𝑥2𝑦𝑦+ 𝑐𝑐𝑥𝑥 = 1  by  8𝑏𝑏3𝑥𝑥3 , 

8𝑎𝑎𝑏𝑏3𝑥𝑥3𝑦𝑦3 + 8𝑏𝑏4𝑥𝑥5𝑦𝑦+ 8𝑏𝑏3𝑐𝑐𝑥𝑥4 = 8𝑏𝑏3𝑥𝑥3 

So substituting for  2𝑏𝑏𝑥𝑥𝑦𝑦 ,     

−𝑎𝑎𝑐𝑐3 − 4𝑏𝑏3𝑥𝑥4𝑐𝑐+ 8𝑏𝑏3𝑐𝑐𝑥𝑥4 = 8𝑏𝑏3𝑥𝑥3 

      M1 

which simplifies to 



4𝑏𝑏3𝑐𝑐𝑥𝑥4− 8𝑏𝑏3𝑥𝑥3− 𝑎𝑎𝑐𝑐3 = 0 

       *A1 

Consider the curve,   
𝑦𝑦 = 4𝑏𝑏3𝑐𝑐𝑥𝑥4 − 8𝑏𝑏3𝑥𝑥3 − 𝑎𝑎𝑐𝑐3  

This has stationary points given by 

𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥 = 16𝑏𝑏3𝑐𝑐𝑥𝑥3 − 24𝑏𝑏3𝑥𝑥2 = 0 

       M1 

i.e.   8𝑏𝑏3𝑥𝑥2(2𝑐𝑐𝑥𝑥− 3) = 0   so, there are only two stationary points on this quartic, which are 
(0,−𝑎𝑎𝑐𝑐3) , A1 which is a point of inflection on the y axis, E1 and  

�
3
2𝑐𝑐 ,

81𝑏𝑏3

4𝑐𝑐3 −
27𝑏𝑏3

𝑐𝑐3 − 𝑎𝑎𝑐𝑐3  � 

       A1 

which is a turning point. 

So for  4𝑏𝑏3𝑐𝑐𝑥𝑥4 − 8𝑏𝑏3𝑥𝑥3− 𝑎𝑎𝑐𝑐3 = 0  to have two solutions, if  𝑐𝑐 > 0 , the turning point needs to be a 

minimum below the x axis and so  81𝑏𝑏
3

4𝑐𝑐3
− 27𝑏𝑏3

𝑐𝑐3
− 𝑎𝑎𝑐𝑐3 < 0 E1 and if 𝑐𝑐 < 0 , the turning point needs to 

be a maximum above the x axis and so  81𝑏𝑏
3

4𝑐𝑐3
− 27𝑏𝑏3

𝑐𝑐3
− 𝑎𝑎𝑐𝑐3 > 0 .  E1 Thus, in either case 

multiplication by  4𝑐𝑐3 yields 

81𝑏𝑏3 − 108𝑏𝑏3 − 4𝑎𝑎𝑐𝑐6 < 0 

which simplifies to   

 4𝑎𝑎𝑐𝑐6 + 27𝑏𝑏3 > 0 

as required.  E1 (10) 

 

(iii)  These are three simultaneous equations in two unknowns so we may solve for two of them and 
substitute into the third.  The first equation rules out  𝑥𝑥 = 0 as the third equation would imply  

 𝑦𝑦 = 0 , given that 𝑎𝑎𝑏𝑏𝑐𝑐 ≠ 0 and thus 𝑎𝑎𝑦𝑦3+ 𝑏𝑏𝑥𝑥2𝑦𝑦+ 𝑐𝑐𝑥𝑥 ≠ 1 as required.   

If we consider  2𝑏𝑏𝑥𝑥𝑦𝑦 + 𝑐𝑐 = 0  and  3𝑎𝑎𝑦𝑦2+ 𝑏𝑏𝑥𝑥2 = 0 , the second if these implies that as  𝑏𝑏 > 0 , 
then 𝑎𝑎 < 0.  E1 

Multiplying the second of these by  4𝑏𝑏𝑦𝑦2 ,  12𝑎𝑎𝑏𝑏𝑦𝑦4+ 4𝑏𝑏2𝑥𝑥2𝑦𝑦2 = 0 and substituting from the first 
of these two equations, 

12𝑎𝑎𝑏𝑏𝑦𝑦4+ 𝑐𝑐2 = 0 

    M1 

Thus 



𝑦𝑦 = ±� −𝑐𝑐2

12𝑎𝑎𝑏𝑏
4

 

    A1 

and so 

𝑥𝑥 = ∓
𝑐𝑐

2𝑏𝑏
�12𝑎𝑎𝑏𝑏
−𝑐𝑐2

4
= ∓�

−3𝑎𝑎𝑐𝑐2

4𝑏𝑏3
4

 

    A1 

Substituting these in  𝑎𝑎𝑦𝑦3 + 𝑏𝑏𝑥𝑥2𝑦𝑦+ 𝑐𝑐𝑥𝑥 = 1  , having first multiplied it by   𝑦𝑦  ,  

that is  𝑎𝑎𝑦𝑦4 + 𝑏𝑏𝑥𝑥2𝑦𝑦2 + 𝑐𝑐𝑥𝑥𝑦𝑦 = 𝑦𝑦 

gives  

−𝑐𝑐2

12𝑏𝑏 +
𝑐𝑐2

4𝑏𝑏 −
𝑐𝑐2

2𝑏𝑏 = ±� −𝑐𝑐2

12𝑎𝑎𝑏𝑏
4

 

which simplifies to 

−
𝑐𝑐2

3𝑏𝑏 = ±� −𝑐𝑐2

12𝑎𝑎𝑏𝑏
4

 

   M1 

Raising this to the power four, 

𝑐𝑐8

81𝑏𝑏4 =
−𝑐𝑐2

12𝑎𝑎𝑏𝑏 

and thus 

4𝑎𝑎𝑐𝑐6 + 27𝑏𝑏3 = 0 

as required.   *A1 (6) 

(Alternative: The first two equations were combined to give  4𝑏𝑏3𝑐𝑐𝑥𝑥4 − 8𝑏𝑏3𝑥𝑥3 − 𝑎𝑎𝑐𝑐3 = 0 in part (ii). 
M1 

The second and third can be combined to give  4𝑏𝑏3𝑥𝑥4 + 3𝑎𝑎𝑐𝑐2 = 0    M1 

So,  8𝑏𝑏3𝑥𝑥3 + 4𝑎𝑎𝑐𝑐3 = 0 

Thus 𝑥𝑥 = − 𝑐𝑐
𝑏𝑏 �

𝑎𝑎
2

3    A1 

and 𝑦𝑦 = 1
√4𝑎𝑎3   A1 

So, to have a solution we require 

3𝑎𝑎�
1
√4𝑎𝑎3 �

2

+ 𝑏𝑏 �−
𝑐𝑐
𝑏𝑏 �

𝑎𝑎
2

3 �
2

= 0 



which simplifies to the required result.  M1A1) 

  



4.   (i)  Suppose  

2𝑘𝑘 cosh
𝑥𝑥
2 cosh

𝑥𝑥
4⋯ cosh

𝑥𝑥
2𝑘𝑘 sinh

𝑥𝑥
2𝑘𝑘 = sinh𝑥𝑥 

for some integer  𝑘𝑘 . E1 

Then 

2𝑘𝑘+1 cosh
𝑥𝑥
2 cosh

𝑥𝑥
4⋯ cosh

𝑥𝑥
2𝑘𝑘+1 sinh

𝑥𝑥
2𝑘𝑘+1 = 2sinh 𝑥𝑥

cosh 𝑥𝑥
2𝑘𝑘+1 sinh 𝑥𝑥

2𝑘𝑘+1

sinh 𝑥𝑥
2𝑘𝑘

 

(which is legitimate because  𝑥𝑥 ≠ 0 and hence  sinh 𝑑𝑑
2𝑘𝑘
≠ 0 ) 

= sinh𝑥𝑥  
2 sinh 𝑥𝑥

2𝑘𝑘+1 cosh 𝑥𝑥
2𝑘𝑘+1

sinh 𝑥𝑥
2𝑘𝑘

= sinh𝑥𝑥  
sinh 𝑥𝑥

2𝑘𝑘

sinh 𝑥𝑥
2𝑘𝑘

= sinh𝑥𝑥 

which is the desired result for 𝑘𝑘 + 1.  M1          

2cosh
𝑥𝑥
2 sinh

𝑥𝑥
2 = sinh𝑥𝑥 

   B1  

so, the result is true for  𝑛𝑛 = 1 . 

Hence by the principle of mathematical induction, 

sinh𝑥𝑥 = 2𝑛𝑛 cosh
𝑥𝑥
2 cosh

𝑥𝑥
4⋯ cosh

𝑥𝑥
2𝑛𝑛 sinh

𝑥𝑥
2𝑛𝑛 

for all positive integer 𝑛𝑛 . 

Thus 

sinh𝑥𝑥
𝑥𝑥  

𝑥𝑥
2𝑛𝑛

sinh 𝑥𝑥
2𝑛𝑛

= 2𝑛𝑛 cosh
𝑥𝑥
2 cosh

𝑥𝑥
4⋯ cosh

𝑥𝑥
2𝑛𝑛 sinh

𝑥𝑥
2𝑛𝑛  

𝑥𝑥
𝑥𝑥  

1
2𝑛𝑛  

1

sinh 𝑥𝑥
2𝑛𝑛

= cosh
𝑥𝑥
2 cosh

𝑥𝑥
4⋯ cosh

𝑥𝑥
2𝑛𝑛 

as required. This working is permissible as  𝑥𝑥 ≠ 0  , and so  sinh 𝑑𝑑
2𝑘𝑘
≠ 0 . E1(4) 

(ii)  
𝑦𝑦

sinh𝑦𝑦 =
𝑦𝑦

𝑦𝑦 + 𝑦𝑦3
3! + 𝑦𝑦5

5! +⋯
=

1

1 + 𝑦𝑦2
3! + 𝑦𝑦4

5! +⋯
 → 1 

as  𝑦𝑦 → 0 .  E1 

As, from (i),  

sinh 𝑥𝑥
𝑥𝑥  

𝑥𝑥
2𝑛𝑛

sinh 𝑥𝑥
2𝑛𝑛

= cosh
𝑥𝑥
2 cosh

𝑥𝑥
4⋯ cosh

𝑥𝑥
2𝑛𝑛 

 
 

letting  𝑛𝑛 → ∞ ,   



and using the result shown from the use of the Maclaurin series that  

𝑥𝑥
2𝑛𝑛

sinh 𝑥𝑥
2𝑛𝑛

→ 1 

 we have  
sinh 𝑥𝑥
𝑥𝑥 = cosh

𝑥𝑥
2 cosh

𝑥𝑥
4⋯ cosh

𝑥𝑥
2𝑛𝑛⋯ 

as required.  E1 (2) 

(iii)  Letting 𝑥𝑥 = ln 2 ,  sinh𝑥𝑥 =
2−1

2
2

= 3
4

 , cosh 𝑑𝑑
2

=
√2+1

√2

2
= 3

2√2
 , cosh 𝑑𝑑

4
 =

�√2+ 1
�√2

2
= √2+1

2�√2
 

       M1 

etc. 

Thus 
3
4

ln2 =
3

2√2
  ×

√2 + 1

2�√2
× 
�√2 + 1

2��√2
 ⋯ 

    M1 A1 

and 

1
ln 2 =

4
2√2

 ×
√2 + 1

2�√2
× 
�√2 + 1

2��√2
 ⋯ =

4

2√2�√2��√2⋯
 ×

1 +√2
2  ×

1 + �√2
2  ×⋯ 

      A1 

The denominator of the first fraction is 

2 × 2
1
2  × 2

1
4  ×⋯ = 21+

1
2+

1
4+⋯ = 22 = 4 

    E1 

So 

1
ln 2 =

1 +√2
2  ×

1 + �√2
2  ×⋯ 

as required. 

(iv)  Substituting  𝑥𝑥 = 𝑖𝑖𝑖𝑖
2

  in  M1 
sinh 𝑥𝑥
𝑥𝑥 = cosh

𝑥𝑥
2 cosh

𝑥𝑥
4⋯ cosh

𝑥𝑥
2𝑛𝑛⋯ 

and using   sinh𝑖𝑖𝑥𝑥 = 𝑖𝑖 sin𝑥𝑥 , cosh 𝑖𝑖𝑥𝑥 =  cos𝑥𝑥 , M1 

sinh𝑖𝑖𝑖𝑖2
𝑖𝑖𝑖𝑖
2

= cosh
𝑖𝑖𝑖𝑖
4 cosh

𝑖𝑖𝑖𝑖
8 ⋯ cosh

𝑖𝑖𝑖𝑖
2𝑛𝑛+1 =

𝑖𝑖
𝑖𝑖𝑖𝑖
2

= cos
𝑖𝑖
4 cos

𝑖𝑖
8⋯ cos

𝑖𝑖
2𝑛𝑛+1⋯ 



   M1 A1 A1 

cos 𝑖𝑖
4

= √2
2

 ,  cos 𝑖𝑖
4

= 2 cos2 𝑖𝑖
8
− 1  and thus  cos 𝑖𝑖

8
= �1+√22

2
= �2+√2

2
 

and similarly,  cos 𝑖𝑖
16

= �1+
�2+√2

2
2

=
�2+�2+√2

2
 etc. M1 A1 M1 

So  

2
𝑖𝑖 =

√2
2  ×

�2 + √2
2  ×

�2 + �2 +√2
2 ⋯ 

as required.    *A1 (9) 

(Alternatively, by induction 

sin𝑥𝑥 = 2𝑛𝑛 cos
𝑥𝑥
2 cos

𝑥𝑥
4⋯ cos

𝑥𝑥
2𝑛𝑛 sin

𝑥𝑥
2𝑛𝑛 

     M1 A1 E1 (as for (i) 

As  𝑑𝑑
sin𝑑𝑑

→ 1  as  𝑦𝑦 → 0 ,  

sin𝑥𝑥
𝑥𝑥 = cos

𝑥𝑥
2 cos

𝑥𝑥
4⋯ cos

𝑥𝑥
2𝑛𝑛⋯ 

     M1A1  

and then, substituting  𝑥𝑥 = 𝑖𝑖
2
  M1 result follows as before A1M1A1. ) 

 
  



5. (i)  

�
1

1 + 𝑒𝑒𝑑𝑑

𝑎𝑎

−𝑎𝑎

 𝑑𝑑𝑥𝑥 = �
𝑒𝑒−𝑑𝑑

𝑒𝑒−𝑑𝑑 + 1

𝑎𝑎

−𝑎𝑎

 𝑑𝑑𝑥𝑥 = [− ln(𝑒𝑒−𝑑𝑑 + 1)]−𝑎𝑎𝑎𝑎 = ln�
𝑒𝑒𝑎𝑎 + 1
𝑒𝑒−𝑎𝑎 + 1

� = ln 𝑒𝑒𝑎𝑎 = 𝑎𝑎 

                                                      M1                                    A1                                                            *A1(3) 

Alternative 1. 

∫ 1
1+𝑒𝑒𝑥𝑥

𝑎𝑎
−𝑎𝑎  𝑑𝑑𝑥𝑥 = ∫ 1+𝑒𝑒𝑥𝑥

1+𝑒𝑒𝑥𝑥
𝑎𝑎
−𝑎𝑎 − 𝑒𝑒𝑥𝑥

1+𝑒𝑒𝑥𝑥
 𝑑𝑑𝑥𝑥 = [𝑥𝑥 − ln(1 +)]−𝑎𝑎𝑎𝑎 = 2𝑎𝑎− ln� 𝑒𝑒𝑎𝑎+1

𝑒𝑒−𝑎𝑎+1
� = 2𝑎𝑎 − ln 𝑒𝑒𝑎𝑎 = 𝑎𝑎  

   M1   A1     *A1(3) 

Alternative 2. 

Substitute  𝑢𝑢 = 𝑒𝑒𝑑𝑑 , 

∫ 1
1+𝑒𝑒𝑥𝑥

𝑎𝑎
−𝑎𝑎  𝑑𝑑𝑥𝑥 = ∫ 1

1+𝑢𝑢
 1
𝑢𝑢

 𝑑𝑑𝑢𝑢𝑒𝑒𝑎𝑎

𝑒𝑒−𝑎𝑎 = ∫ 1
𝑢𝑢
− 1

1+𝑢𝑢
 𝑑𝑑𝑢𝑢𝑒𝑒𝑎𝑎

𝑒𝑒−𝑎𝑎 = [ln𝑢𝑢 − ln(1 + 𝑢𝑢)]𝑒𝑒−𝑎𝑎
𝑒𝑒𝑎𝑎 = 2𝑎𝑎 − ln � 𝑒𝑒𝑎𝑎+1

𝑒𝑒−𝑎𝑎+1
� =  

     M1   A1 

2𝑎𝑎 − ln 𝑒𝑒𝑎𝑎 = 𝑎𝑎   

*A1(3) 

Alternative 3. 

Substitute  𝑢𝑢 = 1 + 𝑒𝑒𝑑𝑑 , 

∫ 1
1+𝑒𝑒𝑥𝑥

𝑎𝑎
−𝑎𝑎  𝑑𝑑𝑥𝑥 = ∫ 1

𝑢𝑢
 1
𝑢𝑢

 𝑑𝑑𝑢𝑢1+𝑒𝑒𝑎𝑎

1+𝑒𝑒−𝑎𝑎 = ∫ 1
𝑢𝑢
− 1

1+𝑢𝑢
 𝑑𝑑𝑢𝑢𝑒𝑒𝑎𝑎

𝑒𝑒−𝑎𝑎 = [ln𝑢𝑢 − ln(1 + 𝑢𝑢)]𝑒𝑒−𝑎𝑎
𝑒𝑒𝑎𝑎 = 2𝑎𝑎 − ln � 𝑒𝑒𝑎𝑎+1

𝑒𝑒−𝑎𝑎+1
� =  

     M1   A1 

2𝑎𝑎 − ln 𝑒𝑒𝑎𝑎 = 𝑎𝑎   

*A1(3) 

Alternative 4. 

�
1

1 + 𝑒𝑒𝑑𝑑

𝑎𝑎

−𝑎𝑎

 𝑑𝑑𝑥𝑥 = �
1

1 + 𝑒𝑒𝑑𝑑

𝑎𝑎

0

 𝑑𝑑𝑥𝑥 + �
1

1 + 𝑒𝑒𝑑𝑑

0

−𝑎𝑎

 𝑑𝑑𝑥𝑥 = �
1

1 + 𝑒𝑒𝑑𝑑

𝑎𝑎

0

 𝑑𝑑𝑥𝑥+ �
1

1 + 𝑒𝑒−𝑑𝑑

0

𝑎𝑎

.−𝑑𝑑𝑥𝑥 

= �
1

1 + 𝑒𝑒𝑑𝑑

𝑎𝑎

0

 𝑑𝑑𝑥𝑥 +�
1

1 + 𝑒𝑒−𝑑𝑑

𝑎𝑎

0

 𝑑𝑑𝑥𝑥 = �
1

1 + 𝑒𝑒𝑑𝑑

𝑎𝑎

0

+
1

1 + 𝑒𝑒−𝑑𝑑  𝑑𝑑𝑥𝑥 = �
1 + 𝑒𝑒−𝑑𝑑 + 1 + 𝑒𝑒−𝑑𝑑

(1 + 𝑒𝑒𝑑𝑑)(1+ 𝑒𝑒−𝑑𝑑)  𝑑𝑑𝑥𝑥
𝑎𝑎

0
 

         M1 

= �
2 + 𝑒𝑒−𝑑𝑑 + 𝑒𝑒−𝑑𝑑

2 + 𝑒𝑒−𝑑𝑑 + 𝑒𝑒−𝑑𝑑  𝑑𝑑𝑥𝑥 = [𝑥𝑥]0𝑎𝑎
𝑎𝑎

0
= 𝑎𝑎  

     A1    *A1 (3) 

 

(ii)  



Suppose  

�𝑔𝑔(𝑥𝑥) 𝑑𝑑𝑥𝑥 = 𝐺𝐺(𝑥𝑥) + 𝑐𝑐 

Then if 

�𝑔𝑔(𝑥𝑥)
𝑎𝑎

0

 𝑑𝑑𝑥𝑥 = 0   ∀𝑎𝑎 ≥ 0  

𝐺𝐺(𝑎𝑎)− 𝐺𝐺(0) = 0   ∀𝑎𝑎 

so  𝐺𝐺(𝑎𝑎) = 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐𝑎𝑎𝑛𝑛𝑐𝑐  ∀𝑎𝑎  and hence  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑔𝑔(𝑥𝑥) = 0  ∀𝑥𝑥 ≥ 0  as required. 

Alternatively, by the FTC, 𝑔𝑔(𝑎𝑎) = 0  ∀𝑎𝑎 ≥ 0   E1 

�
1

1 + 𝑓𝑓(𝑥𝑥)

𝑎𝑎

−𝑎𝑎

 𝑑𝑑𝑥𝑥 = 𝑎𝑎  ⇔  �
1

1 + 𝑓𝑓(𝑥𝑥)

0

−𝑎𝑎

 𝑑𝑑𝑥𝑥 +�
1

1 + 𝑓𝑓(𝑥𝑥)

𝑎𝑎

0

 𝑑𝑑𝑥𝑥 = 𝑎𝑎 

    M1 

⇔  �
1

1 + 𝑓𝑓(−𝑥𝑥)

0

𝑎𝑎

.− 𝑑𝑑𝑥𝑥+ �
1

1 + 𝑓𝑓(𝑥𝑥)

𝑎𝑎

0

 𝑑𝑑𝑥𝑥 = 𝑎𝑎  

   M1 A1 

⇔  �
1

1 + 𝑓𝑓(−𝑥𝑥)

𝑎𝑎

0

+
1

1 + 𝑓𝑓(𝑥𝑥) − 1  𝑑𝑑𝑥𝑥 = 0 

   M1 A1 

so, by stated result at start of part, 

 

⇔   
1

1 + 𝑓𝑓(−𝑥𝑥)  +
1

1 + 𝑓𝑓(𝑥𝑥) − 1 = 0   ∀𝑥𝑥 

   E1 E1 

⇔  1 + 𝑓𝑓(𝑥𝑥) + 1 + 𝑓𝑓(−𝑥𝑥) − � 1 + 𝑓𝑓(−𝑥𝑥)��1 + 𝑓𝑓(𝑥𝑥)� = 0  

⇔  𝑓𝑓(𝑥𝑥) 𝑓𝑓(−𝑥𝑥) = 1 

   *B1 (9) 

 

(iii)   

�
ℎ(𝑥𝑥)

1 + 𝑓𝑓(𝑥𝑥)

𝑎𝑎

−𝑎𝑎

 𝑑𝑑𝑥𝑥 = �
ℎ(𝑥𝑥)

1 + 𝑓𝑓(𝑥𝑥)

0

−𝑎𝑎

 𝑑𝑑𝑥𝑥+ �
ℎ(𝑥𝑥)

1 + 𝑓𝑓(𝑥𝑥)

𝑎𝑎

0

 𝑑𝑑𝑥𝑥 = �
ℎ(−𝑥𝑥)

1 + 𝑓𝑓(−𝑥𝑥)

0

𝑎𝑎

.−𝑑𝑑𝑥𝑥 + �
ℎ(𝑥𝑥)

1 + 𝑓𝑓(𝑥𝑥)

𝑎𝑎

0

 𝑑𝑑𝑥𝑥 

     M1 



=  �
ℎ(𝑥𝑥)

1 + 𝑓𝑓(−𝑥𝑥) + 
ℎ(𝑥𝑥)

1 + 𝑓𝑓(𝑥𝑥)

𝑎𝑎

0

 𝑑𝑑𝑥𝑥 = � ℎ(𝑥𝑥) 𝑑𝑑𝑥𝑥
𝑎𝑎

0
 

by the result of (ii). M1 *A1 (3) 

(iv)  

�
𝑒𝑒−𝑑𝑑  cos𝑥𝑥

cosh 𝑥𝑥

𝑖𝑖
2

−𝑖𝑖2

 𝑑𝑑𝑥𝑥 = �
𝑒𝑒−𝑑𝑑  cos𝑥𝑥
𝑒𝑒𝑑𝑑 + 𝑒𝑒−𝑑𝑑

2

𝑖𝑖
2

−𝑖𝑖2

 𝑑𝑑𝑥𝑥 = 2 �
cos𝑥𝑥

1 + 𝑒𝑒2𝑑𝑑

𝑖𝑖
2

−𝑖𝑖2

 𝑑𝑑𝑥𝑥  

     M1 A1 

cos 𝑥𝑥  satisfies the conditions for  ℎ(𝑥𝑥)  in part (iii) and  𝑒𝑒2𝑑𝑑  satisfies the conditions for  𝑓𝑓(𝑥𝑥)  in part 
(ii). E1 

Therefore, 

�
𝑒𝑒−𝑑𝑑  cos 𝑥𝑥

cosh 𝑥𝑥

𝑖𝑖
2

−𝑖𝑖2

 𝑑𝑑𝑥𝑥 = 2� cos 𝑥𝑥

𝑖𝑖
2

0

 𝑑𝑑𝑥𝑥 = 2 [sin𝑥𝑥]0
𝑖𝑖
2 = 2 

   M1   A1 (5) 

  



6. (i)

cos(𝜃𝜃 + 𝛼𝛼) − cos𝜃𝜃 = cos 𝜃𝜃 cos 𝛼𝛼 − sin𝜃𝜃 sin𝛼𝛼− cos𝜃𝜃  ≈  cos 𝜃𝜃  �1 −
𝛼𝛼2

2
�   − sin𝜃𝜃 𝛼𝛼 − cos 𝜃𝜃 

= −𝛼𝛼 sin𝜃𝜃  − 𝛼𝛼2

2
 cos 𝜃𝜃    as required.  M1 *A1 

If  sin𝜃𝜃  ≠ 0 

lim
𝛼𝛼→0

sin(𝜃𝜃 + 𝛼𝛼) − sin𝜃𝜃
cos(𝜃𝜃 + 𝛼𝛼) − cos 𝜃𝜃 = lim

𝛼𝛼→0

𝛼𝛼 cos 𝜃𝜃   − 𝛼𝛼2
2  sin𝜃𝜃

−𝛼𝛼 sin𝜃𝜃  −𝛼𝛼
2

2  cos 𝜃𝜃
= lim

𝛼𝛼→0

cos𝜃𝜃   −𝛼𝛼2  sin𝜃𝜃

− sin𝜃𝜃  − 𝛼𝛼
2  cos𝜃𝜃

= − cot𝜃𝜃  

M1 A1 A1 

(Alternative  by l’Hopital , lim
𝛼𝛼→0

sin(𝜃𝜃+𝛼𝛼)−sin 𝜃𝜃
cos(𝜃𝜃+𝛼𝛼)−cos 𝜃𝜃

= lim
𝛼𝛼→0

cos(𝜃𝜃+𝛼𝛼)
−sin(𝜃𝜃+𝛼𝛼) = lim

𝛼𝛼→0
−cot(𝜃𝜃+ 𝛼𝛼) = − cot𝜃𝜃

M1 A1 A1 ) 

If  sin𝜃𝜃 = 0  

lim
𝛼𝛼→0

sin(𝜃𝜃 + 𝛼𝛼) − sin𝜃𝜃
cos(𝜃𝜃 + 𝛼𝛼) − cos𝜃𝜃 = lim

𝛼𝛼→0

cos𝜃𝜃  

−𝛼𝛼2  cos 𝜃𝜃
= lim

𝛼𝛼→0

−2
 𝛼𝛼

M1 

→−∞  as   𝛼𝛼 → +0  and  →∞  as   𝛼𝛼 → −0 A1 (7) 

(ii) (a)  If  𝑄𝑄0 is the initial point of contact of  𝐶𝐶1 and 𝐶𝐶2 , and if  𝑋𝑋  is the point on 𝐶𝐶2 which was
initially at 𝑄𝑄0 , then if  𝑄𝑄𝑂𝑂𝑄𝑄0 = 𝜃𝜃 , arc 𝑄𝑄𝑄𝑄0 on 𝐶𝐶1 is of length  (𝑛𝑛− 1)𝑎𝑎𝜃𝜃 E1 and this will equal the
arc length 𝑄𝑄𝑋𝑋  on 𝐶𝐶2 . So if  𝑇𝑇 is the centre of 𝐶𝐶2 , 𝑄𝑄𝑇𝑇𝑋𝑋 = (𝑛𝑛 − 1)𝜃𝜃 , and  𝑇𝑇𝑃𝑃 makes an 

angle 𝜃𝜃 + (𝑛𝑛 − 1)𝜃𝜃 = 𝑛𝑛𝜃𝜃  with the 𝑥𝑥 axis.  E1 

Thus the 𝑥𝑥-coordinate of  𝑃𝑃 is   𝑥𝑥(𝜃𝜃) = 𝑛𝑛𝑎𝑎 cos 𝜃𝜃 + 𝑎𝑎 cos(𝑛𝑛𝜃𝜃) = 𝑎𝑎(𝑛𝑛 cos 𝜃𝜃 + cos 𝑛𝑛𝜃𝜃)  as required. 

Similarly, 𝑦𝑦(𝜃𝜃) = 𝑎𝑎(𝑛𝑛 sin𝜃𝜃 + sin𝑛𝑛𝜃𝜃) .  M1 *A1 (4) 

(b) 𝑂𝑂𝑃𝑃 = (𝑛𝑛 − 1)𝑎𝑎  if and only if  (𝑛𝑛 cos𝜃𝜃  + cos 𝑛𝑛𝜃𝜃)2 + (𝑛𝑛 sin𝜃𝜃 + sin𝑛𝑛𝜃𝜃)2 = (𝑛𝑛 − 1)2

That is if  𝑛𝑛2 + 2𝑛𝑛 cos(𝑛𝑛− 1)𝜃𝜃+ 1 = 𝑛𝑛2 − 2𝑛𝑛 + 1  which is  cos(𝑛𝑛 − 1)𝜃𝜃 = −1

M1 

so, when  (𝑛𝑛− 1)𝜃𝜃 is an odd multiple of  𝑖𝑖 M1 

Therefore  𝜃𝜃 = 2𝑟𝑟+1
𝑛𝑛−1

 𝑖𝑖  for  𝑟𝑟 = 0,1,⋯ A1 (3) 

(Alternatively, 𝑂𝑂𝑃𝑃 = (𝑛𝑛 − 1)𝑎𝑎  only if  𝑛𝑛 cos𝜃𝜃  + cos𝑛𝑛𝜃𝜃 =  (𝑛𝑛 − 1)cos 𝜃𝜃  i.e.  cos 𝑛𝑛𝜃𝜃 = −cos 𝜃𝜃  , 
and  𝑛𝑛 sin𝜃𝜃 + sin𝑛𝑛𝜃𝜃 = (𝑛𝑛− 1)sin𝜃𝜃  i.e.  sin𝑛𝑛𝜃𝜃 = −sin𝜃𝜃   M1 

Thus  cos(𝑛𝑛 − 1)𝜃𝜃 = −cos 𝜃𝜃 cos 𝜃𝜃 +−sin𝜃𝜃  sin𝜃𝜃 = −1 so (𝑛𝑛 − 1)𝜃𝜃 is an odd multiple of  𝑖𝑖 M1 

Result as before A1) 

(c)



lim
𝛼𝛼→0

𝑦𝑦(𝜃𝜃0 + 𝛼𝛼) − 𝑦𝑦(𝜃𝜃0)
𝑥𝑥(𝜃𝜃0 + 𝛼𝛼) − 𝑥𝑥(𝜃𝜃0) = lim

𝛼𝛼→0

𝑎𝑎(𝑛𝑛 sin(𝜃𝜃0 + 𝛼𝛼) + sin𝑛𝑛(𝜃𝜃0 + 𝛼𝛼))− 𝑎𝑎(𝑛𝑛 sin𝜃𝜃0 + sin𝑛𝑛𝜃𝜃0)
𝑎𝑎(𝑛𝑛 cos(𝜃𝜃0 + 𝛼𝛼) + cos𝑛𝑛(𝜃𝜃0 + 𝛼𝛼))− 𝑎𝑎(𝑛𝑛 cos𝜃𝜃0  + cos 𝑛𝑛𝜃𝜃0) 

M1 

= lim
𝛼𝛼→0

𝑛𝑛 �𝛼𝛼 cos𝜃𝜃0   −𝛼𝛼
2

2  sin𝜃𝜃0�+ �𝑛𝑛𝛼𝛼 cos 𝑛𝑛𝜃𝜃0   − 𝑛𝑛2𝛼𝛼2
2  sin𝑛𝑛𝜃𝜃0�

𝑛𝑛�−𝛼𝛼 sin𝜃𝜃0  −𝛼𝛼
2

2  cos𝜃𝜃0� + �−𝑛𝑛𝛼𝛼 sin𝑛𝑛𝜃𝜃0  − 𝑛𝑛2𝛼𝛼2
2  cos𝑛𝑛𝜃𝜃0�

M1 A1 

= lim
𝛼𝛼→0

cos 𝜃𝜃0 + cos𝑛𝑛𝜃𝜃0 −
𝛼𝛼
2 (sin𝜃𝜃0 + 𝑛𝑛 sin𝑛𝑛𝜃𝜃0)

−(sin𝜃𝜃0 + sin𝑛𝑛𝜃𝜃0)− 𝛼𝛼
2 (cos𝜃𝜃0 + 𝑛𝑛 cos 𝑛𝑛𝜃𝜃0)

=
sin𝜃𝜃0 + 𝑛𝑛 sin𝑛𝑛𝜃𝜃0
cos 𝜃𝜃0 + 𝑛𝑛 cos 𝑛𝑛𝜃𝜃0

 

as  cos 𝜃𝜃0 + cos𝑛𝑛𝜃𝜃0 = 2 cos(𝑛𝑛 + 1) 𝜃𝜃0
2

 cos(𝑛𝑛− 1)𝜃𝜃0
2

  and  (𝑛𝑛 − 1) 𝜃𝜃0
2

= 𝑖𝑖
2

  so  cos(𝑛𝑛 − 1) 𝜃𝜃0
2

= 0 

and similarly,  sin𝜃𝜃0 + sin𝑛𝑛𝜃𝜃0 = 2 sin(𝑛𝑛 + 1) 𝜃𝜃0
2

 cos(𝑛𝑛 − 1) 𝜃𝜃0
2

 = 0 

Further, 

sin𝜃𝜃0 + 𝑛𝑛 sin𝑛𝑛𝜃𝜃0 = sin𝜃𝜃0 + 𝑛𝑛�sin�(𝑛𝑛 − 1) + 1�𝜃𝜃0� 

= sin𝜃𝜃0 + 𝑛𝑛(sin(𝑛𝑛 − 1)𝜃𝜃0  cos𝜃𝜃0 + cos(𝑛𝑛 − 1)𝜃𝜃0  sin𝜃𝜃0) 

= (1−𝑛𝑛) sin𝜃𝜃0 

and 

cos𝜃𝜃0 + 𝑛𝑛 cos𝑛𝑛𝜃𝜃0 = cos𝜃𝜃0 + 𝑛𝑛(cos(𝑛𝑛 − 1)𝜃𝜃0 cos𝜃𝜃0 − sin(𝑛𝑛 − 1)𝜃𝜃0 sin𝜃𝜃0) 

= (1−𝑛𝑛) cos 𝜃𝜃0  

So 

lim
𝛼𝛼→0

𝑦𝑦(𝜃𝜃0 + 𝛼𝛼) −𝑦𝑦(𝜃𝜃0)
𝑥𝑥(𝜃𝜃0 + 𝛼𝛼) −𝑥𝑥(𝜃𝜃0) =

(1− 𝑛𝑛) sin𝜃𝜃0
(1− 𝑛𝑛) cos𝜃𝜃0

= tan𝜃𝜃0  

M1 A1 

The LHS is the gradient of the tangent to the curve at 𝑃𝑃 and the RHS is the gradient of  𝑂𝑂𝑃𝑃 , as 
required. E1 (6) 



7.  (i) 

𝑓𝑓(𝒓𝒓) = 𝒏𝒏 × 𝒓𝒓 = �
𝑎𝑎
𝑏𝑏
𝑐𝑐
�  × �

𝑥𝑥
𝑦𝑦
𝑧𝑧
� = �

𝑏𝑏𝑧𝑧 − 𝑐𝑐𝑦𝑦
𝑐𝑐𝑥𝑥 − 𝑎𝑎𝑧𝑧
𝑎𝑎𝑦𝑦 − 𝑏𝑏𝑥𝑥

� 

The x-component of  𝑓𝑓�𝑓𝑓(𝒓𝒓)� is the x-component of  �
𝑎𝑎
𝑏𝑏
𝑐𝑐
� × �

𝑏𝑏𝑧𝑧 − 𝑐𝑐𝑦𝑦
𝑐𝑐𝑥𝑥 − 𝑎𝑎𝑧𝑧
𝑎𝑎𝑦𝑦 − 𝑏𝑏𝑥𝑥

�  

which is  𝑏𝑏(𝑎𝑎𝑦𝑦− 𝑏𝑏𝑥𝑥) − 𝑐𝑐(𝑐𝑐𝑥𝑥 − 𝑎𝑎𝑧𝑧) = −𝑥𝑥(𝑏𝑏2 + 𝑐𝑐2) + 𝑎𝑎𝑏𝑏𝑦𝑦+ 𝑎𝑎𝑐𝑐𝑧𝑧  as required.  M1 *A1 

−𝑥𝑥(𝑏𝑏2 + 𝑐𝑐2) + 𝑎𝑎𝑏𝑏𝑦𝑦+ 𝑎𝑎𝑐𝑐𝑧𝑧 = −𝑥𝑥(𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2) + 𝑎𝑎2𝑥𝑥 + 𝑎𝑎𝑏𝑏𝑦𝑦+ 𝑎𝑎𝑐𝑐𝑧𝑧 = −𝑥𝑥 + 𝑎𝑎(𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑦𝑦+ 𝑐𝑐𝑧𝑧)     

as  𝒏𝒏  is a unit vector. E1 

Similarly, the y and z -components of  𝑓𝑓�𝑓𝑓(𝒓𝒓)�   −𝑦𝑦 + 𝑏𝑏(𝑎𝑎𝑥𝑥+ 𝑏𝑏𝑦𝑦+ 𝑐𝑐𝑧𝑧)  and  −𝑧𝑧 + 𝑐𝑐(𝑎𝑎𝑥𝑥+ 𝑏𝑏𝑦𝑦+ 𝑐𝑐𝑧𝑧) 

respectively and thus  𝑓𝑓�𝑓𝑓(𝒓𝒓)�= −𝒓𝒓 + (𝒏𝒏.𝒓𝒓)𝒏𝒏      M1 *A1 

    

G1 G1 G1 (8) 

(ii) 

𝑔𝑔(𝒏𝒏) = 𝒏𝒏+ sin𝜃𝜃 𝑓𝑓(𝒏𝒏) + (1− cos 𝜃𝜃) 𝑓𝑓�𝑓𝑓(𝒏𝒏)� 

= 𝒏𝒏+ sin𝜃𝜃 𝒏𝒏 × 𝒏𝒏+ (1 − cos 𝜃𝜃)�(𝒏𝒏.𝒏𝒏)𝒏𝒏 −𝒏𝒏� 

= 𝒏𝒏 

    M1A1 

𝑔𝑔(𝒓𝒓) = 𝒓𝒓 + sin𝜃𝜃 𝑓𝑓(𝒓𝒓) + (1 − cos𝜃𝜃) 𝑓𝑓�𝑓𝑓(𝒓𝒓)� 

= 𝒓𝒓+ sin𝜃𝜃 𝒏𝒏 × 𝒓𝒓+ (1 − cos 𝜃𝜃)�(𝒏𝒏.𝒓𝒓)𝒏𝒏− 𝒓𝒓� 

= 𝒓𝒓 cos𝜃𝜃 + sin𝜃𝜃  𝒏𝒏 × 𝒓𝒓 

   A1 

If  𝒓𝒓  is perpendicular to  𝒏𝒏 , then 𝒓𝒓 , 𝒏𝒏 , and 𝒏𝒏 × 𝒓𝒓  form a mutually perpendicular vector triad. 



g maps 𝒓𝒓  to 𝒓𝒓 cos 𝜃𝜃 + sin𝜃𝜃 𝒏𝒏 × 𝒓𝒓  which represents an anticlockwise rotation by  𝜃𝜃  about an axis 
in the direction 𝒏𝒏 as B1 both vectors are of equal magnitude E1 and are at angle of  𝜃𝜃  to each other 
E1 and are both perpendicular to  𝒏𝒏 . E1 (7) 

(iii)  
ℎ(𝒔𝒔) = −𝒔𝒔 − 2𝑓𝑓(𝒔𝒔) = −𝒔𝒔 − 2�(𝒏𝒏. 𝒔𝒔)𝒏𝒏− 𝒔𝒔� = 𝒔𝒔 − 2(𝒏𝒏.𝒔𝒔)𝒏𝒏 

So, h represents a reflection M1 in the plane through the origin perpendicular to 𝒏𝒏  A1 

Justification. If  𝒓𝒓  is as in (ii). 

ℎ(𝒏𝒏) = 𝒏𝒏− 2(𝒏𝒏.𝒏𝒏)𝒏𝒏= −𝒏𝒏 

ℎ(𝒓𝒓) = 𝒓𝒓 − 2(𝒏𝒏.𝒓𝒓)𝒏𝒏= 𝒓𝒓 

ℎ(𝒏𝒏 × 𝒓𝒓) = 𝒏𝒏 × 𝒓𝒓 − 2(𝒏𝒏.𝒏𝒏 × 𝒓𝒓)𝒏𝒏= 𝒏𝒏 × 𝒓𝒓 

   B1 

So any vector in the plane through the origin perpendicular to 𝒏𝒏 is invariant under h, E1 and any 
vector in the direction of 𝒏𝒏 is reversed. E1 (5) 

 

  



8.  (i) 

By de Moivre,  

cos(𝑘𝑘𝜃𝜃) + 𝑖𝑖 sin(𝑘𝑘𝜃𝜃) = (cos𝜃𝜃 + 𝑖𝑖 sin𝜃𝜃)𝑘𝑘  

= �cos𝑘𝑘 𝜃𝜃 − �𝑘𝑘2�  cos𝑘𝑘−2 𝜃𝜃 sin2 𝜃𝜃 + �𝑘𝑘4�  cos𝑘𝑘−4 𝜃𝜃 sin4 𝜃𝜃 −⋯  �

+ 𝑖𝑖 ��𝑘𝑘1� cos𝑘𝑘−1 𝜃𝜃 sin𝜃𝜃 − �𝑘𝑘3� cos𝑘𝑘−3 𝜃𝜃 sin3 𝜃𝜃 + �𝑘𝑘5� cos𝑘𝑘−5 𝜃𝜃 sin5 𝜃𝜃 − ⋯  � 

  M1 A1 A1 

Equating imaginary parts,  

sin(𝑘𝑘𝜃𝜃) = �𝑘𝑘1� cos𝑘𝑘−1 𝜃𝜃 sin𝜃𝜃 − �𝑘𝑘3� cos𝑘𝑘−3 𝜃𝜃 sin3 𝜃𝜃 + �𝑘𝑘5� cos𝑘𝑘−5 𝜃𝜃 sin5 𝜃𝜃 − ⋯   

= sin𝜃𝜃  cos𝑘𝑘−1 𝜃𝜃 �𝑘𝑘− �𝑘𝑘3�tan2 𝜃𝜃 + �𝑘𝑘5�tan4 𝜃𝜃 − ⋯� 

   M1 

= sin𝜃𝜃  cos𝑘𝑘−1 𝜃𝜃 �𝑘𝑘− �𝑘𝑘3�
(sec2𝜃𝜃 − 1) + �𝑘𝑘5�

(sec2 𝜃𝜃 − 1)2 −⋯� 

as required.   *A1 

Similarly, equating real parts,  

cos(𝑘𝑘𝜃𝜃) = cos𝑘𝑘 𝜃𝜃 − �𝑘𝑘2� cos𝑘𝑘−2 𝜃𝜃 sin2 𝜃𝜃 + �𝑘𝑘4� cos𝑘𝑘−4 𝜃𝜃 sin4 𝜃𝜃 − ⋯   

= cos𝑘𝑘 𝜃𝜃  �1 −�𝑘𝑘2�
(sec2𝜃𝜃 − 1) + �𝑘𝑘4�

(sec2 𝜃𝜃 − 1)2 − ⋯� 

   B1 (6) 

(ii) 

sin(𝑘𝑘𝜃𝜃) = 0 ⇒ sin𝜃𝜃  cos𝑘𝑘−1 𝜃𝜃 �𝑘𝑘 − �𝑘𝑘3�
(sec2 𝜃𝜃 − 1) + �𝑘𝑘5�

(sec2𝜃𝜃 − 1)2− ⋯� = 0 

Thus, if  𝑘𝑘  were odd, 

 

sin𝜃𝜃  
1

𝑎𝑎𝑘𝑘−1
�𝑘𝑘 − �𝑘𝑘3�

(𝑎𝑎2 − 1) + �𝑘𝑘5�
(𝑎𝑎2 − 1)2 −⋯+ (−1)

𝑘𝑘−1
2 (𝑎𝑎2 − 1)

𝑘𝑘−1
2 � = 0 

  M1 

and we are given that sin𝜃𝜃 ≠ 0    

As  𝑎𝑎  is odd, (𝑎𝑎2 − 1) is even.  Thus 

�𝑘𝑘 − �𝑘𝑘3�
(𝑎𝑎2 − 1) + �𝑘𝑘5�

(𝑎𝑎2 − 1)2 −⋯+ (−1)
𝑘𝑘−1
2 (𝑎𝑎2 − 1)

𝑘𝑘−1
2 � 

is the sum of one odd number (the first) and the remainder even, and hence is odd.  A1 



We are given that  sin𝜃𝜃 ≠ 0 and because 𝑎𝑎  is odd, 1
𝑎𝑎𝑘𝑘−1

≠ 0 , and the bracketed expression is odd 
and thus not zero.  Hence, we have a contradiction and thus 𝑘𝑘  cannot be odd, and must therefore 
be even, as required.  E1  

If  sin(𝑘𝑘𝜃𝜃) = 0 , and  𝑘𝑘  is even, as sin(𝑘𝑘𝜃𝜃) = 2 sin𝑘𝑘𝜃𝜃
2

 cos 𝑘𝑘𝜃𝜃
2

  where  𝑘𝑘
2
  is an integer, we know  

sin 𝑘𝑘𝜃𝜃
2
≠ 0  so it would have to be that  cos 𝑘𝑘𝜃𝜃

2
= 0 .  *B1  (4)          

Let  𝑘𝑘
2

= 𝑛𝑛 . 

By the second result of (i),  cos(𝑛𝑛𝜃𝜃) = cos𝑛𝑛 𝜃𝜃  �1−�𝑛𝑛2� (sec2 𝜃𝜃 − 1) + �𝑛𝑛4� (sec2𝜃𝜃 − 1)2 −⋯� 

=
1
𝑎𝑎𝑛𝑛  �1 −�𝑛𝑛2� (𝑎𝑎2 − 1) + �𝑛𝑛4� (𝑎𝑎2 − 1)2− ⋯� 

  M1 

As before, the bracketed expression is odd, being the sum of one odd number (the first which is 1) 
and the remainder even, and thus not zero, so  cos(𝑛𝑛𝜃𝜃) ≠ 0  which is a contradiction.  A1 

Thus, there is no least integer 𝑘𝑘 for which  sin(𝑘𝑘𝜃𝜃) = 0 , dM1 and hence that  𝑘𝑘𝜃𝜃 = 180𝑝𝑝 , i.e. that 

 𝜃𝜃 = 180𝑝𝑝
𝑘𝑘

 .  Hence  𝜃𝜃  is irrational. E1 (4) 

(iii)   Suppose there is a positive odd integer 𝑘𝑘 such that  sin(𝑘𝑘𝑘𝑘) = 0  and  sin(𝑚𝑚𝑘𝑘) ≠ 0  for all 
integers 𝑚𝑚  with  0 < 𝑚𝑚 < 𝑘𝑘. 

Then  sin(𝑘𝑘𝑘𝑘) = sin𝑘𝑘  cos𝑘𝑘−1 𝑘𝑘 �𝑘𝑘− �𝑘𝑘3� tan2𝑘𝑘 + �𝑘𝑘5� tan4𝑘𝑘− ⋯� 

= sin𝑘𝑘  cos𝑘𝑘−1𝑘𝑘 �𝑘𝑘 − �𝑘𝑘3�𝑏𝑏
2 +�𝑘𝑘5�𝑏𝑏

4 − ⋯� 

    M1  

As before in (ii), the bracketed expression is odd and thus not zero, sin𝑘𝑘  ≠ 0  and as  

 cot𝑘𝑘 = 1
𝑏𝑏

 ≠ 0 , cos 𝑘𝑘  ≠ 0 .  Hence a contradiction. E1 

So, it would be necessary to have  𝑘𝑘  even.   

If  sin(𝑘𝑘𝑘𝑘) = 0 , and  𝑘𝑘  is even, as sin(𝑘𝑘𝑘𝑘) = 2 sin𝑘𝑘𝑘𝑘
2

 cos 𝑘𝑘𝑘𝑘
2

  where  𝑘𝑘
2
  is an integer, we know  

sin 𝑘𝑘𝑘𝑘
2
≠ 0  so it would have to be that  cos 𝑘𝑘𝑘𝑘

2
= 0 .  E1 Let  𝑘𝑘

2
= 𝑛𝑛 . 

cos(𝑛𝑛𝑘𝑘)  = cos𝑛𝑛 𝑘𝑘  �1− �𝑛𝑛2�𝑏𝑏
2 + �𝑛𝑛4�𝑏𝑏

4 − ⋯� 

Once again, the bracketed expression is odd and thus not zero and  cos𝑘𝑘  ≠ 0 so we have a 
contradiction. E1 

Once again, there is no value  𝑘𝑘 for which  sin(𝑘𝑘𝑘𝑘) = 0 , M1 i.e, that  𝑘𝑘 = 180𝑝𝑝
𝑘𝑘

  so 𝑘𝑘 is irrational. E1 
(6) 

  



9.  

Conservation of linear momentum for the collision between A and B gives 

𝑚𝑚𝑣𝑣1+ 𝑘𝑘𝑚𝑚𝑣𝑣2 = 𝑚𝑚𝑢𝑢 

   M1 

i.e.  
𝑣𝑣1+ 𝑘𝑘𝑣𝑣2 = 𝑢𝑢                      (1) 

Newton’s experimental law of impact gives 

𝑣𝑣2− 𝑣𝑣1 = 𝑒𝑒𝑢𝑢                 (2) 

 M1 

(1)−𝑘𝑘(2)  gives  𝑣𝑣1(1 + 𝑘𝑘) = 𝑢𝑢(1− 𝑘𝑘𝑒𝑒)  and hence  𝑣𝑣1 = 𝑢𝑢(1−𝑘𝑘𝑒𝑒)
(1+𝑘𝑘)   as required. *A1 

(1) + (2)  gives  𝑣𝑣2(𝑘𝑘+ 1) = 𝑢𝑢(1 + 𝑒𝑒)  and hence  𝑣𝑣2 = 𝑢𝑢(1+𝑒𝑒)
(1+𝑘𝑘)   as required. *A1 (4) 

Time for B to reach wall is  𝐷𝐷
𝛽𝛽𝑢𝑢

  and the time to then return to point  1
2
𝐷𝐷  from wall is  

1
2𝐷𝐷

𝑒𝑒𝛽𝛽𝑢𝑢
 

Time for A to reach point  1
2
𝐷𝐷  from wall is  

1
2𝐷𝐷

𝛼𝛼𝑢𝑢
 

Thus 
1
2𝐷𝐷
𝛼𝛼𝑢𝑢 =

𝐷𝐷
𝛽𝛽𝑢𝑢 +

1
2𝐷𝐷
𝑒𝑒𝛽𝛽𝑢𝑢 

   M1 A1 

 

which simplifies to 

1
2𝛼𝛼 =

1
𝛽𝛽 +

1
2𝑒𝑒𝛽𝛽 =

1
𝛽𝛽
�1 +

1
2𝑒𝑒
� 

Hence 

𝛼𝛼 = 𝛽𝛽 �
𝑒𝑒

1 + 2𝑒𝑒� 

   A1 

Thus 

(1−𝑘𝑘𝑒𝑒) = (1 + 𝑒𝑒) �
𝑒𝑒

1 + 2𝑒𝑒� 

𝑘𝑘𝑒𝑒 = 1− (1 + 𝑒𝑒) �
𝑒𝑒

1 + 2𝑒𝑒� =
1 + 2𝑒𝑒− 𝑒𝑒 − 𝑒𝑒2

1 + 2𝑒𝑒  

   M1 

and so 



𝑘𝑘 =
1 + 𝑒𝑒 − 𝑒𝑒2

𝑒𝑒(1 + 2𝑒𝑒)  

as required. *A1 (5) 

(ii)  The first collision (between A and B) is as in part (i). 

The second collision (between B and C) is as in part (i) as the ratio of masses is the same but  𝑢𝑢  is 
replaced by  𝛽𝛽𝑢𝑢  . 

 

Thus, after two collisions, A has speed  𝛼𝛼𝑢𝑢 , B has speed  𝛼𝛼𝛽𝛽𝑢𝑢  , and C has speed  𝛽𝛽2𝑢𝑢 .  M1 A1 

The condition that B and C collide half the distance from the wall is as in (i)  (𝐷𝐷 = 3𝑑𝑑) 

So   

𝑘𝑘 =
1 + 𝑒𝑒 − 𝑒𝑒2

𝑒𝑒(1 + 2𝑒𝑒) 

   E1 

Equating the times of A and B to reach the point of simultaneous collision, we have 

5
2 𝑑𝑑
𝛼𝛼𝑢𝑢 =

𝑑𝑑
𝛽𝛽𝑢𝑢 +

3
2 𝑑𝑑
𝛼𝛼𝛽𝛽𝑢𝑢  

   M1 A1 

Therefore 

5
𝛼𝛼 =

2
𝛽𝛽 +

3
𝛼𝛼𝛽𝛽  

5𝛽𝛽 = 2𝛼𝛼+ 3 

   A1 

So, substituting for  𝛼𝛼  and  𝛽𝛽 , 

5(1 + 𝑒𝑒)
(1 + 𝑘𝑘) =

2(1− 𝑘𝑘𝑒𝑒)
(1 + 𝑘𝑘) + 3 

Thus, 

5 + 5𝑒𝑒 = 2 − 2𝑘𝑘𝑒𝑒 + 3 + 3𝑘𝑘 

5𝑒𝑒 = 𝑘𝑘(3 − 2𝑒𝑒) 

and so 

𝑘𝑘 =
5𝑒𝑒

3− 2𝑒𝑒 

    A1 

 

 



Equating these two expressions for 𝑘𝑘 

1 + 𝑒𝑒 − 𝑒𝑒2

𝑒𝑒(1 + 2𝑒𝑒) = 
5𝑒𝑒

3 − 2𝑒𝑒 

   M1 

(3− 2𝑒𝑒)(1 + 𝑒𝑒 − 𝑒𝑒2) = 5𝑒𝑒2(1 + 2𝑒𝑒) 

2𝑒𝑒3− 5𝑒𝑒2+ 𝑒𝑒 + 3 =  10𝑒𝑒3 + 5𝑒𝑒2 

8𝑒𝑒3 + 10𝑒𝑒2− 𝑒𝑒 − 3 = 0 

   A1 

Factorising we have, 

(2𝑒𝑒 − 1)(4𝑒𝑒2 + 7𝑒𝑒 + 3) = 0 

further 

(2𝑒𝑒− 1)(𝑒𝑒+ 1)(4𝑒𝑒+ 3) = 0 

   M1 

𝑒𝑒 > 0  so  𝑒𝑒 = 1
2
  as required.  *A1 (11) 

 

  



10.  (i) 

𝐵𝐵𝑃𝑃 = 2𝑎𝑎 cos 𝜃𝜃 

Thus, the extension of  𝐵𝐵𝑃𝑃  is  2𝑎𝑎 cos𝜃𝜃 − 𝑎𝑎 = 𝑎𝑎(2cos 𝜃𝜃 − 1) 

  M1 

and the tension in 𝐵𝐵𝑃𝑃 is  𝑐𝑐1𝑊𝑊
𝑎𝑎(2 cos 𝜃𝜃−1)

𝑎𝑎
= 𝑐𝑐1𝑊𝑊(2 cos𝜃𝜃 − 1) 

Resolving in the direction  𝐵𝐵𝑃𝑃 , 𝑊𝑊 sin𝜃𝜃 =𝑐𝑐1𝑊𝑊(2 cos𝜃𝜃 − 1) 

  M1 A1 

(Alternative 

Resolving vertically  𝑇𝑇𝐵𝐵𝐵𝐵 sin𝜃𝜃 + 𝑇𝑇𝐶𝐶𝐵𝐵 cos𝜃𝜃 = 𝑊𝑊 

Resolving horizontally  𝑇𝑇𝐵𝐵𝐵𝐵 cos𝜃𝜃 = 𝑇𝑇𝐶𝐶𝐵𝐵 sin𝜃𝜃  

Solving simultaneously  𝑇𝑇𝐵𝐵𝐵𝐵 = 𝑊𝑊 sin𝜃𝜃 

So  𝑊𝑊 sin𝜃𝜃 = 𝑐𝑐1𝑊𝑊(2cos 𝜃𝜃 − 1) 

  M1 A1     ) 

 

and hence  

𝑐𝑐1 =
sin𝜃𝜃

(2cos 𝜃𝜃 − 1) 

  

as required. *A1 

By symmetry,  

𝑐𝑐2 =
cos 𝜃𝜃

(2sin𝜃𝜃 − 1) 

 B1 (5) 

[Both divisions are valid as both extensions are positive and so  cos𝜃𝜃 > 1
2
  and  sin𝜃𝜃 > 1

2
 ]   @ 

(ii) 

The GPE of the particle is −𝑊𝑊 × 𝐵𝐵𝑃𝑃 sin𝜃𝜃 = −2𝑊𝑊𝑎𝑎 sin𝜃𝜃 cos𝜃𝜃  

   M1 A1 

The EPE of 𝐵𝐵𝑃𝑃  is  

𝑐𝑐1𝑊𝑊�𝑎𝑎(2 cos𝜃𝜃 − 1)�2

2𝑎𝑎  

   M1 

and the EPE of CP is  



𝑐𝑐2𝑊𝑊�𝑎𝑎(2 sin𝜃𝜃 − 1)�2

2𝑎𝑎  

Thus, the total potential energy of the system is 

−𝑊𝑊𝑎𝑎
2  (4sin𝜃𝜃 cos 𝜃𝜃 − 𝑐𝑐1(2cos 𝜃𝜃 − 1)2 − 𝑐𝑐2(2sin𝜃𝜃 − 1)2 

 A1 

=
−𝑊𝑊𝑎𝑎

2  �4sin𝜃𝜃 cos 𝜃𝜃 −
sin𝜃𝜃

(2 cos 𝜃𝜃 − 1) (2cos 𝜃𝜃 − 1)2 −
cos 𝜃𝜃

(2sin𝜃𝜃 − 1) (2 sin𝜃𝜃 − 1)2� 

=
−𝑊𝑊𝑎𝑎

2
(sin𝜃𝜃 + cos𝜃𝜃 ) 

  

So 

𝑝𝑝 =
1
2

(sin𝜃𝜃 + cos𝜃𝜃 ) 

   A1 (5) 

(sin𝜃𝜃 + cos 𝜃𝜃 ) = √2 cos(𝜃𝜃 − 45𝑜𝑜) 

 M1 A1 

As  cos𝜃𝜃 > 1
2
  and  sin𝜃𝜃 > 1

2
 , 30𝑜𝑜 < 𝜃𝜃 < 60𝑜𝑜 

The expression is a maximum when 𝜃𝜃 = 45𝑜𝑜  when  1
2

(sin𝜃𝜃 + cos 𝜃𝜃 ) = √2
2

  *B1 which is attainable 

and a minimum when 𝜃𝜃 = 30𝑜𝑜 or 60𝑜𝑜 (from @)  M1 E1 when  1
2

(sin𝜃𝜃 + cos𝜃𝜃 ) = 1
4
�1 +√3 �  M1 

*A1 (7) which cannot be attained. 

(Alternative 1.  (sin𝜃𝜃 + cos𝜃𝜃  ) = √2 sin(𝜃𝜃+ 45𝑜𝑜)   which, similarly, is an attainable maximum 
when  𝜃𝜃 = 45𝑜𝑜 and an unattainable minimum when 𝜃𝜃 = 30𝑜𝑜 or 60𝑜𝑜  

Alternative 2.  Instead of using harmonic form 

𝑑𝑑𝑝𝑝
𝑑𝑑𝜃𝜃

= 1
2

(cos𝜃𝜃 − sin𝜃𝜃 ) = 0  for stationary value M1 A1, giving tan𝜃𝜃 = 0 ,  𝜃𝜃 = 45𝑜𝑜 and when  
1
2

(sin𝜃𝜃 + cos 𝜃𝜃 ) = √2
2

  *B1 which is attainable and a minimum) 

 

 

So   √2
2
≥ 𝑝𝑝 > 1

4
�1 +√3 � 

We require to show that  0.75 > 𝑝𝑝 ≥ 0.65 . 

64 < 75  ⇒
4
25 <

3
16 ⇒

2
5 <

√3
4  ⇒ 0.65 <

1
4 �1 +√3� 

  M1 



9
16 > 

1
2 =

2
4   ⇒ 0.75 =

3
4 >

√2
2  

  M1 

Thus,  0.75 > √2
2
≥ 𝑝𝑝 > 1

4
�1 +√3 � >  0.65  which shows that  𝑝𝑝 = 0.7 correct to one significant 

figure. *A1 (3) 

  



11.  (i) (a)  As the coin is fair, the distribution is binomial and symmetric,  

so  𝑃𝑃(𝑋𝑋 = 𝑟𝑟) = 𝑃𝑃(𝑋𝑋 = 𝑁𝑁−𝑟𝑟) = 𝑃𝑃(𝑋𝑋 = 2𝑛𝑛− 𝑟𝑟)  

Therefore, 

𝑃𝑃(𝑋𝑋 ≤ 𝑛𝑛 − 1) = �𝑃𝑃(𝑋𝑋 = 𝑖𝑖) = �𝑃𝑃
𝑛𝑛−1

𝑖𝑖=0

(𝑋𝑋 = 2𝑛𝑛− 𝑖𝑖)
𝑛𝑛−1

𝑖𝑖=0

= � 𝑃𝑃(𝑋𝑋 = 𝑖𝑖) 
2𝑛𝑛

𝑖𝑖=𝑛𝑛+1

= 𝑃𝑃(𝑋𝑋 ≥ 𝑛𝑛 + 1) 

   E1 

1 = 𝑃𝑃(𝑋𝑋 ≤ 𝑛𝑛 − 1) + 𝑃𝑃(𝑋𝑋 = 𝑛𝑛) +𝑃𝑃(𝑋𝑋 ≥ 𝑛𝑛 + 1) = 2𝑃𝑃(𝑋𝑋 ≤ 𝑛𝑛 − 1) +𝑃𝑃(𝑋𝑋 = 𝑛𝑛) 

Hence,  

𝑃𝑃(𝑋𝑋 ≤ 𝑛𝑛 − 1) =
1
2 �1 −𝑃𝑃(𝑋𝑋 = 𝑛𝑛)� 

  E1 (2) 

(b) 

𝜇𝜇 = 𝑁𝑁𝑝𝑝 = 2𝑛𝑛× 1
2

= 𝑛𝑛  (or by symmetry)  B1 

  

𝛿𝛿 = 𝐸𝐸(|𝑋𝑋 −𝜇𝜇|) = �(𝑛𝑛 − 𝑟𝑟) �2𝑛𝑛
𝑟𝑟 �

�
1
2
�
2𝑛𝑛𝑛𝑛−1

𝑟𝑟=0

+ � (𝑟𝑟− 𝑛𝑛)
2𝑛𝑛

𝑟𝑟=𝑛𝑛+1

�2𝑛𝑛𝑟𝑟 �
�

1
2
�
2𝑛𝑛

 

   M1 

= �(𝑛𝑛 − 𝑟𝑟) �2𝑛𝑛
𝑟𝑟 �

�
1
2
�
2𝑛𝑛𝑛𝑛−1

𝑟𝑟=0

+ � (𝑟𝑟− 𝑛𝑛)
2𝑛𝑛

𝑟𝑟=𝑛𝑛+1

� 2𝑛𝑛
2𝑛𝑛− 𝑟𝑟�

�
1
2
�
2𝑛𝑛

 

= �(𝑛𝑛 − 𝑟𝑟) �2𝑛𝑛𝑟𝑟 �
�

1
2
�
2𝑛𝑛

+
𝑛𝑛−1

𝑟𝑟=0

�(𝑛𝑛 − 𝑐𝑐)
𝑛𝑛−1

𝑠𝑠=0

�2𝑛𝑛𝑐𝑐 �
�

1
2
�
2𝑛𝑛

 

   M1 

= 2�(𝑛𝑛− 𝑟𝑟) �2𝑛𝑛𝑟𝑟 �
�

1
2
�
2𝑛𝑛

= �(𝑛𝑛 − 𝑟𝑟) �2𝑛𝑛
𝑟𝑟 �

1
22𝑛𝑛−1

𝑛𝑛−1

𝑟𝑟=0

𝑛𝑛−1

𝑟𝑟=0

 

as required.   *A1 (4) 

(c)  

𝑟𝑟 �2𝑛𝑛
𝑟𝑟 � = 𝑟𝑟

(2𝑛𝑛!)
𝑟𝑟! (2𝑛𝑛 − 𝑟𝑟)! =

2𝑛𝑛 × (2𝑛𝑛− 1)!
(𝑟𝑟− 1)! �(2𝑛𝑛 − 1)− (𝑟𝑟− 1)�!

= 2𝑛𝑛 �2𝑛𝑛 − 1
𝑟𝑟 − 1 � 

                                                  M1       *A1(2) 

𝛿𝛿 = �(𝑛𝑛− 𝑟𝑟) �2𝑛𝑛𝑟𝑟 �
1

22𝑛𝑛−1

𝑛𝑛−1

𝑟𝑟=0

= �𝑛𝑛�2𝑛𝑛
𝑟𝑟 �

1
22𝑛𝑛−1

𝑛𝑛−1

𝑟𝑟=0

−� 𝑟𝑟�2𝑛𝑛
𝑟𝑟 �

1
22𝑛𝑛−1

𝑛𝑛−1

𝑟𝑟=0

 

     M1 



=
1

22𝑛𝑛−1 �𝑛𝑛
� �2𝑛𝑛

𝑟𝑟 �
𝑛𝑛−1

𝑟𝑟=0

−� 𝑟𝑟�2𝑛𝑛
𝑟𝑟 �

1
22𝑛𝑛−1

𝑛𝑛−1

𝑟𝑟=1

� 

=
1

22𝑛𝑛−1 �𝑛𝑛
1
2 �22𝑛𝑛 − �2𝑛𝑛

𝑛𝑛 �
� −� 2𝑛𝑛 �2𝑛𝑛− 1

𝑟𝑟 − 1 �
1

22𝑛𝑛−1

𝑛𝑛−1

𝑟𝑟=1

� 

 M1   M1 

=
𝑛𝑛

22𝑛𝑛−1�22𝑛𝑛−1 −
1
2 �

2𝑛𝑛
𝑛𝑛 � − 2��2𝑛𝑛 − 1

𝑟𝑟 �
𝑛𝑛−2

𝑟𝑟=0

� 

  

=
𝑛𝑛

22𝑛𝑛−1�22𝑛𝑛−1 −
1
2 �

2𝑛𝑛
𝑛𝑛 �−

� �2𝑛𝑛 − 1
𝑟𝑟 � −

𝑛𝑛−2

𝑟𝑟=0

� �2𝑛𝑛 − 1
𝑟𝑟 �

2𝑛𝑛−1

𝑟𝑟=𝑛𝑛+1

� 

   M1 

=
𝑛𝑛

22𝑛𝑛−1 �22𝑛𝑛−1 −
1
2 �

2𝑛𝑛
𝑛𝑛 �−

�22𝑛𝑛−1 − �2𝑛𝑛 − 1
𝑛𝑛 − 1 � − �

2𝑛𝑛 − 1
𝑛𝑛 ��� 

=
𝑛𝑛

22𝑛𝑛−1
�−

1
2 �

2𝑛𝑛
𝑛𝑛 �+ 2�2𝑛𝑛 − 1

𝑛𝑛 �� 

   M1 

 

But  

�2𝑛𝑛− 1
𝑛𝑛 � =

(2𝑛𝑛 − 1)!
𝑛𝑛! (𝑛𝑛 − 1)! =

2𝑛𝑛
2𝑛𝑛

(2𝑛𝑛− 1)!
𝑛𝑛! (𝑛𝑛 − 1)! =

1
2

(2𝑛𝑛)!
𝑛𝑛!𝑛𝑛! =

1
2 �

2𝑛𝑛
𝑛𝑛 � 

   M1 

Thus 

𝛿𝛿 =
𝑛𝑛

22𝑛𝑛−1
1
2 �

2𝑛𝑛
𝑛𝑛 � =

𝑛𝑛
22𝑛𝑛 �

2𝑛𝑛
𝑛𝑛 � 

as required.   *A1 (7) 

(Alternative   

𝛿𝛿 = �(𝑛𝑛 − 𝑟𝑟) �2𝑛𝑛𝑟𝑟 �
1

22𝑛𝑛−1

𝑛𝑛

𝑟𝑟=0

= 𝑛𝑛��2𝑛𝑛
𝑟𝑟 �

1
22𝑛𝑛−1

𝑛𝑛

𝑟𝑟=0

− 2𝑛𝑛��2𝑛𝑛− 1
𝑟𝑟 − 1 �

1
22𝑛𝑛−1

𝑛𝑛

𝑟𝑟=1

 

  M1 A1 

= 2𝑛𝑛��2𝑛𝑛
𝑟𝑟 �

1
22𝑛𝑛  − 2𝑛𝑛� �2𝑛𝑛− 1

𝑐𝑐 �
1

22𝑛𝑛−1

𝑛𝑛−1

𝑠𝑠=0

𝑛𝑛

𝑟𝑟=0

 

  M1 

= 2𝑛𝑛𝑃𝑃(𝑋𝑋 ≤ 𝑛𝑛) − 2𝑛𝑛𝑃𝑃(𝑌𝑌≤ 𝑛𝑛 − 1) 



(where Y is a binomial variable �2𝑛𝑛 − 1, 1
2
� )  M1 

= 𝑛𝑛�1 +𝑃𝑃(𝑋𝑋 = 𝑛𝑛)� − 2𝑛𝑛 ×
1
2 = 𝑛𝑛�2𝑛𝑛

𝑛𝑛 �
1

22𝑛𝑛 

 M1  M1 *A1   ) 

(ii)  𝜇𝜇 = 𝑁𝑁𝑝𝑝 = (2𝑛𝑛+ 1) × 1
2

= 2𝑛𝑛+1
2

  (or by symmetry)  

𝛿𝛿 = 𝐸𝐸(|𝑋𝑋 −𝜇𝜇|) = � �𝑟𝑟−
2𝑛𝑛 + 1

2
��2𝑛𝑛+ 1

𝑟𝑟 ��
1
2
�
2𝑛𝑛+12𝑛𝑛+1

𝑟𝑟=0

 

=
1

22𝑛𝑛
��

2𝑛𝑛 + 1
2 −𝑟𝑟��2𝑛𝑛+ 1

𝑟𝑟 �
𝑛𝑛

𝑟𝑟=0

 

 M1 A1 

=
1

22𝑛𝑛
�
2𝑛𝑛+ 1

2
��2𝑛𝑛 + 1

𝑟𝑟 �
𝑛𝑛

𝑟𝑟=0

−�𝑟𝑟�2𝑛𝑛 + 1
𝑟𝑟 �

𝑛𝑛

𝑟𝑟=0

� 

=
1

22𝑛𝑛
�
2𝑛𝑛+ 1

2 × 22𝑛𝑛 −�𝑟𝑟�2𝑛𝑛 + 1
𝑟𝑟 �

𝑛𝑛

𝑟𝑟=1

� 

=
1

22𝑛𝑛
�
2𝑛𝑛+ 1

2 × 22𝑛𝑛 −�(2𝑛𝑛 + 1) � 2𝑛𝑛
𝑟𝑟− 1�

𝑛𝑛

𝑟𝑟=1

� 

    using the first result of (i) c) M1 

=
1

22𝑛𝑛
�
2𝑛𝑛 + 1

2 × 22𝑛𝑛 − (2𝑛𝑛+ 1)��2𝑛𝑛
𝑟𝑟 �

𝑛𝑛−1

𝑟𝑟=0

� 

=
(2𝑛𝑛 + 1)

22𝑛𝑛  �
22𝑛𝑛

2 −�
22𝑛𝑛 − �2𝑛𝑛

𝑛𝑛
�

2
�� 

   M1 

=
(2𝑛𝑛+ 1)

22𝑛𝑛+1 �2𝑛𝑛
𝑛𝑛 � 

   A1 (5) 

which can alternatively be written as  

=
(2𝑛𝑛+ 1)

22𝑛𝑛+1
(2𝑛𝑛)!
𝑛𝑛!𝑛𝑛! = 

(2𝑛𝑛+ 1)!
22𝑛𝑛+1𝑛𝑛!𝑛𝑛! =

(2𝑛𝑛 + 1)! (𝑛𝑛 + 1)
22𝑛𝑛+1(𝑛𝑛+ 1)!𝑛𝑛! =

(𝑛𝑛 + 1)
22𝑛𝑛+1 �2𝑛𝑛 + 1

𝑛𝑛 � 

 

(Alternative  



𝛿𝛿 = ��
2𝑛𝑛 + 1

2 −𝑟𝑟��2𝑛𝑛+ 1
𝑟𝑟 �

1
22𝑛𝑛

𝑛𝑛

𝑟𝑟=0

 

   M1 A1 

= (2𝑛𝑛 + 1)��2𝑛𝑛 + 1
𝑟𝑟 �

1
22𝑛𝑛+1 −

(2𝑛𝑛 + 1)�� 2𝑛𝑛
𝑟𝑟 − 1�

1
22𝑛𝑛

𝑛𝑛

𝑟𝑟=1

𝑛𝑛

𝑟𝑟=0

 

   M1 

= (2𝑛𝑛+ 1)
1
2 −

(2𝑛𝑛 + 1)��2𝑛𝑛
𝑐𝑐 �

1
22𝑛𝑛

𝑛𝑛−1

𝑠𝑠=0

 

= (2𝑛𝑛+ 1)
1
2 −

(2𝑛𝑛 + 1) �
1
2−

1
2�

2𝑛𝑛
𝑛𝑛 �

1
22𝑛𝑛

� 

   M1 

=
(2𝑛𝑛+ 1)

22𝑛𝑛+1 �2𝑛𝑛
𝑛𝑛 � 

   A1   ) 

  



12.  (i) 

If  𝐴𝐴𝑂𝑂𝐵𝐵 = 𝜃𝜃 , then the probability distribution function for 𝜃𝜃          𝑓𝑓(𝜃𝜃) = 1
2𝑖𝑖

   on [0,2𝑖𝑖] 

𝐴𝐴𝐵𝐵 = 2𝑎𝑎 sin
𝜃𝜃
2 

   M1 A1 

𝐸𝐸(𝐴𝐴𝐵𝐵) = � 2𝑎𝑎sin
𝜃𝜃
2 

1
2𝑖𝑖   𝑑𝑑𝜃𝜃

2𝑖𝑖

0
 

   M1 A1 

=
2𝑎𝑎
𝑖𝑖
�−cos

𝜃𝜃
2
�
0

2𝑖𝑖

 

=
4𝑎𝑎
𝑖𝑖  

   A1 (5) 

(Alternatives replace 𝜃𝜃 with 2𝑘𝑘  , 𝑓𝑓(𝑘𝑘) = 1
𝑖𝑖

   on [0,𝑖𝑖]   ,  

or minor segment 𝐴𝐴𝑂𝑂𝐵𝐵 = 2𝑘𝑘 , 𝑓𝑓(𝑘𝑘) = 2
𝑖𝑖

   on �0, 𝑖𝑖
2
� ) 

(ii)   

𝑃𝑃(𝑅𝑅 ≤ 𝑥𝑥) =
𝑖𝑖𝑥𝑥2

𝑖𝑖𝑎𝑎2 =
𝑥𝑥2

𝑎𝑎2 

   M1 

Therefore 

𝑓𝑓𝑅𝑅(𝑥𝑥) =
2𝑥𝑥
𝑎𝑎2 

for  0 ≤ 𝑥𝑥 ≤ 𝑎𝑎   A1 (2) 

If the ends of the chord are  𝑋𝑋  and  𝑌𝑌 , then 𝑂𝑂𝑋𝑋𝑌𝑌 is an isosceles triangle so 

𝑋𝑋𝑌𝑌 = 2�𝑎𝑎2 −𝑅𝑅2 sin2 𝑐𝑐 

   M1 A1 (2) 

𝐿𝐿(𝑐𝑐) = � 2�𝑎𝑎2 − 𝑥𝑥2 sin2 𝑐𝑐
𝑎𝑎

0
  

2𝑥𝑥
𝑎𝑎2  𝑑𝑑𝑥𝑥 

   M1 A1 

= �−
4

3𝑎𝑎2 sin2 𝑐𝑐
(𝑎𝑎2 − 𝑥𝑥2 sin2 𝑐𝑐)

3
2�
0

𝑎𝑎

 

= −
4

3𝑎𝑎2 sin2 𝑐𝑐  (𝑎𝑎3 cos3 𝑐𝑐 − 𝑎𝑎3) 



=
4𝑎𝑎(1− cos3 𝑐𝑐)

3 sin2 𝑐𝑐  

as required.   dM1 *A1 (4) 

(1− cos3 𝑐𝑐)
sin2 𝑐𝑐 =

(1 − cos3 𝑐𝑐)
(1 − cos2 𝑐𝑐) =

1 + cos 𝑐𝑐 + cos2 𝑐𝑐
1 + cos 𝑐𝑐 =

1
1 + cos 𝑐𝑐 +

cos 𝑐𝑐 (1 + cos 𝑐𝑐)
1 + cos 𝑐𝑐  

 M1 

=
1

2 cos2 𝑐𝑐2
+ cos 𝑐𝑐 = cos 𝑐𝑐 +

1
2 sec2

𝑐𝑐
2 

 M1 *A1 (3) 

(Alternative  

(1 − cos3 𝑐𝑐)
sin2 𝑐𝑐 =

1− cos 𝑐𝑐 + cos 𝑐𝑐 (1− cos2 𝑐𝑐)
sin2 𝑐𝑐 =

2 sin2 𝑐𝑐2
4 sin2 𝑐𝑐2 cos2 𝑐𝑐2

+ cos 𝑐𝑐 =
1
2 sec2

𝑐𝑐
2 + cos 𝑐𝑐 

 M1   M1  *A1  ) 

giving  

𝐿𝐿(𝑐𝑐) =
4𝑎𝑎
3  �cos 𝑐𝑐 +

1
2 sec2

𝑐𝑐
2
� 

 

(iii)   

𝐸𝐸�𝐿𝐿(𝑇𝑇)� =  �
4𝑎𝑎
3  �cos 𝑐𝑐+

1
2 sec2

𝑐𝑐
2
� 

𝑖𝑖
2

0

2
𝑖𝑖  𝑑𝑑𝑐𝑐 

   M1 A1 

=
8𝑎𝑎
3𝑖𝑖  �sin 𝑐𝑐+ tan�

𝑐𝑐
2
��
0

𝑖𝑖
2

 

=
16𝑎𝑎
3𝑖𝑖  

   M1 A1 (4) 
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